
COMPREHENSIVE ROUTING SECURITY DEVELOPMENT AND
DEPLOYMENT FOR THE INTERNET

PARSONS GOVERNMENT SERVICES, INC.

FEBRUARY 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-021

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2015-021 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S /
WARREN H. DEBANY, JR.

 / S /
FRANK H. BORN
Work Unit Manager Technical Advisor, Information

Exploitation and Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

February 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

Sep 2009 – Oct 2014
4. TITLE AND SUBTITLE

COMPREHENSIVE ROUTING SECURITY DEVELOPMENT AND
DEPLOYMENT FOR THE INTERNET

5a. CONTRACT NUMBER
FA8750-09-C-0192

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Sandra Murphy

5d. PROJECT NUMBER
DHSB

5e. TASK NUMBER
GP

5f. WORK UNIT NUMBER
09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Parsons Government Services, Inc.
25531 Commercenter Dr STE 120
Lake Forest CA 92630-8874

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-021
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2015-0247
Date Cleared: 22 Jan 2015
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objective of this effort is to design, implement and facilitate deployment of a comprehensive solution for security for
Border Gateway Protocol (BGP), stardardizing the solution in the Internet Engineering Task Force (IETF). The project
resulted in published IETF documents that are in production use in all regions of the Internet. The IETF specifications
provide a Resource Public Key Infrastructure (RPKI) for strong origin validation protection for BGP routes. The project
produced implementations and tools to facilitate deployment and monitor use. The project team assembled a design
team to design and specify a path validation solution, creating a comprehensive solution. This path validation design was
submitted to the IETF where it is a work in progress. The project team implemented the path validation specification.

15. SUBJECT TERMS
Internet Routing, Infrastructure, Border Gateway Protocol, BGP, Resource Public Key Infrastructure, RPKI

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
FRANK BORN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

58

TABLE OF CONTENTS

List of Figures .. iii
Acknowledgements ... iv
1 SUMMARY .. 1
2 INTRODUCTION.. 2

2.1 BGP and a Comprehensive Solution... 3
3 METHODS, ASSUMPTIONS, AND PROCEDURES ... 4

3.1 Project Design ... 4
3.1.1 Project Team: Multi-Stakeholder Constituency. .. 4
3.1.2 Implementation: Reference Implementations and Open Source Model. 4
3.1.3 Security Solutions: Parallel Existing Systems. .. 5
3.1.4 Comprehensive Solution: Distinct Strategies for Solution Components. 6
Origin Validation Strategy. .. 6

Path Validation Strategy. ... 7
3.1.5 Deployment: Proactive Advocacy. .. 7

3.2 Software Reference Implementation Designs ... 7
3.2.1 Software: Rpki.net. .. 8

3.2.1.1 Relying Party Tools. ... 10
3.2.1.2 Certificate Authority (CA) Tools. ... 10
3.2.1.3 Rpki.net GUI Interface.. 11
3.2.1.4 Documentation and Development Environment. .. 12
3.2.1.5 Software Dependencies. .. 12

3.2.2 Software: RPSTIR. .. 13
3.2.2.1 RPKI synchronization and local caching. ... 14
3.2.2.2 RTR Server; Route Origin Verification. ... 15
3.2.2.3 Compliance Tools. .. 15
3.2.2.4 Software Dependencies. .. 15

3.2.3 Software: BGPSEC Implementation.. 15
4 RESULTS AND DISCUSSION .. 17

4.1 Comprehensive Solution ... 17
4.2 Project Success in Standardization ... 18
4.3 Project Design Success ... 18

4.3.1 Results: Team Multi-Stakeholder Constituency. ... 19
4.3.2 Results: Deployment. ... 20
4.3.3 Results: Proactive Advocacy. .. 20

4.4 Results: Rpki.net ... 21
4.4.1 RPKI Supporting Protocols.. 21
4.4.2 Testing Scripts. .. 22
4.4.3 Balance Between Performance and Agile Coding. .. 22
4.4.4 Documentation and Development Environment. ... 22
4.4.5 Rpki.net GUI. ... 22

4.5 Results: RPSTIR ... 23
4.6 Results: BGPSEC Implementation ... 24
4.7 Lessons Learned.. 28

4.7.1 Workshops. .. 28

i

4.7.2 Testing and Deployment Tools. ... 28
4.7.3 Revisiting Design Decisions as Capabilities are Added. ... 28
4.7.4 Testing.. 29
4.7.5 Tradeoffs between Performance and Agile Coding. .. 30

4.8 Challenges and Residual Issues .. 30
4.8.1 Transport Protocol. .. 30
4.8.2 Legacy Space. .. 31
4.8.3 Non-Technical Concerns and External Influences. ... 31
4.8.4 RPKI Latency... 32
4.8.5 BGPSEC Islands of Trust. ... 32
4.8.6 Routing Problems outside the BGP Protocol. .. 32
4.8.7 Uncertain Address Records.. 33
4.8.8 Further Specification Development. .. 33

5 CONCLUSIONS .. 34
5.1 Summary of Results .. 34
5.2 Final Status.. 35

6 REFERENCES ... 36
APPENDIX: PARSONS CO-AUTHORED IETF DOCUMENTS 40

A.1 IETF Published RFCs .. 40
A.2 IETF Internet-Drafts, Works in Progress ... 41

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS... 47
GLOSSARY OF TERMINOLOGY ... 50

ii

List of Figures and Tables

 List of Figures
Figure 1: rpki.net ... 9
Figure 2: Overview of RPSTIR Implementation .. 14
Figure 3: BIRD ... 24
Figure 4: BGPSEC Implementation .. 25
Figure 5: Overview of BGPSEC Implementation ... 26

iii

Acknowledgements
The following are acknowledged for their contributions to this report and to the work of this
project:

Rob Austein

Michael Baer

Edric Barnes

Randy Bush

Andrew Chi

Michael Elkins

Wes Hardaker

Stephen Kent

Derrick Kong

Matthew Lepinski

David Mandelberg

Russ Mundy

Mark Reynolds

Karen Seo

Anuja Sonalker

Robert Story

Ronald Watro

Samuel Weiler

iv

1 SUMMARY
The Internet is a critical resource both nationally and internationally. It must provide stable,
reliable operation for the millions of people, organizations and governments that depend upon it.
The world’s critical communication, emergency, energy, control and financial systems are
irrevocably tied to the Internet.

The Internet routing infrastructure provides the basic capability for Internet traffic to be
exchanged between millions of end users. Forwarding traffic between any users of the global
Internet is provided by routing infrastructure that exchanges routing information. There is only
one protocol used in the global Internet for this exchange, the Border Gateway Protocol (BGP).
However, BGP is recognized as being vulnerable to misuse and attack that could damage the
exchange of traffic in the Internet.

The objective of this effort is to design, implement and facilitate deployment of a
comprehensive solution for security for BGP, encompassing both validation of the origin of a
BGP announcement and validation of the path it takes. To ensure a comprehensive solution, work
in this project has two parallel goals: to bring to fruition the standardization and deployment of
origin validation, and to design, standardize, and implement a compatible path validation
solution.

This project has had great success. As the project began, there were works in progress in the
Internet Engineering Task Force (IETF) to define a security architecture for BGP origin
validation, but no published standards and no certification services in production At this point:

• The IETF has published a set of documents that provide a security architecture for BGP
origin validation, called the Resource Public Key Infrastructure (RPKI). Of the two dozen
published documents, eighteen are co-authored by members of this team.

• Every Regional Internet Registry (RIR) is certifying resources under this security
architecture.

• Major router vendors have implemented the use of the RPKI.
• Workshops, tutorials and presentations have spread the word in operational comunities

worldwide.
• A path validation solution, BGPSEC, has been designed, specified, and accepted by the

IETF working group as a work item.
• First announcements of planned or initiated use of RPKI data in routing operations have

made.
• Government agencies have issued recommendations for certification in general or RPKI

use in particular.
• Major network service providers have begun testing and experimentation in labs or off-line
This progress is astounding after decades of BGP security proposals that did not succeed.

However, there remain challenges:

• Like all new technologies, deployment of the RPKI requires cost and effort. And, in
common with all security technologies, deployment does not show an immediate, direct,
clear return on investment for first and early adopters. Benefit grows as the number of
adopters grow.

 Approved for Public Release; Distribution Unlimited.
1

• The RPKI parallels the address allocation hierarchy, and some fear mis-behavior by a
hierarchical authority (whether forced, deliberate, or accidental) could do damage to
routing.

• The transport protocol for the RPKI is recognized to have scaling problems.

2 INTRODUCTION
The Internet is a critical resource both nationally and internationally. It must provide stable,
reliable operation for the millions of people, organizations and governments that depend upon it.
The world’s critical communication, emergency, energy, control and financial systems are
irrevocably tied to the Internet.

The Internet routing infrastructure provides the basic capability for Internet traffic to be
exchanged between millions of end users. Forwarding traffic between users of the global Internet
is provided by routing infrastructure that exchanges routing information. There is only one
protocol used in the global Internet for this exchange, the BGP.

The President’s National Strategy to Secure Cyberspace [35] recognizes the need for essential
improvements to the routing system of the Internet. Because of its ubiquitous use, exploitation of
BGP vulnerabilities has global reach and impact on Internet traffic. The National Strategy
specifically states:

The Border Gateway Protocol (BGP) is at greatest risk of being the target of
attacks designed to disrupt or degrade service on a large scale.

The National Academy of Sciences’s book At the Nexus of Cybersecurity and Public Policy:
Some Basic Concepts and Issues [34] recently echoed this concern:

... the Internet is a network of networks. Each network acts as an autonomous
system under a common administration and with common routing policies. BGP is the
Internet protocol used to characterize every network to each other, and in particular to
every network operated by an Internet service provider (ISP).

In general, the characterization is provided by the ISP responsible for the network,
and in part the characterization specifies how that ISP would route traffic to a given
destination. A problem arises if and when a malicious ISP in some part of the Internet
falsely asserts that it is the right path to a given destination (i.e., it asserts that it would
forward traffic to a destination but in fact would not). Traffic sent to that destination
can be discarded, causing that destination to appear to be off the net. Further, the
malicious ISP might be able to mimic the expected behavior of the correct destination,
fooling unsuspecting users into thinking that their traffic has been delivered properly
and thus causing further damage.

An illustration of the potential for damage is the YouTube incident [43]. When officials in
Pakistan wanted to block content from www.youtube.com from reaching their country, BGP
mechanisms were used to stop the content from reaching Pakistan. However, these BGP
mechanisms were not restricted to Pakistan and also prevented Internet users outside Pakistan
from reaching www.youtube.com. In the end, every Internet user was impacted, not just those
within the nation state of Pakistan. There was nothing especially vulnerable about YouTube; the
same could happen to any site in the Internet.

 Approved for Public Release; Distribution Unlimited.
2

For over a decade prior to this project, many different security protections for BGP had been
proposed but had failed to be deployed. The various communities critical for deployment
(network operators, resource registries, router vendors, standardization communities, security
communities) did not accept, implement and deploy any of these approaches.

2.1 BGP and a Comprehensive Solution
BGP provides propagation of network reachability information to Internet addresses among the
Autonomous Systems (ASs) that make up the global Internet. An AS uses the reachability
information it has received in order to forward packets to their destination.

The BGP protocol produces a route to a network address in two steps. First, an AS (e.g., an
enterprise, an Internet Service Provider (ISP) network, etc.) that has direct connectivity to a
network that is using that address originates a BGP route for that address. Second, an
autonomous system propagates BGP routes it has received from one neighbor to other neighbors,
adding its Autonomous System Number (ASN) to the path of ASs recorded in the BGP route.

There are two different attacks that can be conducted on these two steps. First, an AS may
mis-originate a BGP route, falsely claiming direct connectivity to an address. Second, an AS may
path spoof a BGP route, inventing or corrupting the path of ASs recorded in the route. Both steps
may result in traffic being misdirected away from the legitimate destination or away from the
intended route.

The IETF, with leadership and participation from members of this team, began work on a
security architecture that would protect BGP originations. However, protection of BGP
originations (origin validation), even when brought to full deployment and use, is only the initial,
base step of BGP security. A BGP route must also include a legitimate path, verified through
path validation, to the authorized origin. Otherwise, an authorized origin can be grafted onto a
bogus BGP route and the bogus advertisement will still be accepted.

For comprehensive security in the Internet routing infrastructure, both origin validation and
path validation must be assured.

The objective of this effort is to design, implement and facilitate deployment of a
comprehensive solution for security for the Border Gateway Protocol (BGP), completing the
security basis underway in the Internet Engineering Task Force (IETF). To ensure a
comprehensive solution, work in this project had two parallel goals: to bring to fruition the
standardization and deployment of origin validation, building on the work in progress in the
IETF, and to design, standardize, and implement a compatible path validation solution. Results of
this work will be made freely and openly available without restriction, in order to facilitate the
widest possible use in the Internet including use by commercial, research and academic
organizations. The remainder of this document focuses on the work that was done, and the
progress made toward these goals.

 Approved for Public Release; Distribution Unlimited.
3

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Project Design
We designed this project around several assumptions: that the project team constituency would
be critical to the success of an acceptable, deployable, and secure solution, that implementation
and particularly open source implementation would be needed to ensure success, that a solution
would need to mirror the existing routing infrastructure processes and structures, that a
comprehensive solution strategy needed distinct independent strategies for the two solution
components, and that proactive assistance for deployment would be needed.

3.1.1 Project Team: Multi-Stakeholder Constituency. The success of this project required the
acceptance and deployment by several key stakeholder communities.

To ensure that success, we created a project team that included experienced representatives
from many of the critical communities - those familiar with network infrastructures operations,
with open standardization, with BGP, with the registry community, with software implementation
for network applications, and with security -

The PARSONS team included

• Parsons: Parsons brought decades of experience in security, particularly routing security, in
the IETF standardization process including leadership roles, and in the design and
deployment of secure Internet infrastructure protocols.

• ISC: ISC brought decades of experience, including leadership roles, in software
development, in distributed infrastructure protocols, in the IETF standardization process, in
open source development, and in the software platform that formed the basis for this work.

• RGNET: RGNET brought decades of experience, including leadership roles, in network
operations and network operations communities, in Internet registries and their
communities, in the IETF standardization process, and in router vendor software
development.

• DRL: Dragon Research Labs is composed of the critical key personnel of ISC and
RGNET.

• BBN: Raytheon BBN Technologies brought decades of experience, including leadership
roles, in security, in routing security, and in production level software development.

3.1.2 Implementation: Reference Implementations and Open Source Model. This project’s
objective requires acceptance, deployment and use of a new infrastructure protocol. That
objective required standardization for wide implementation by commercial vendors, and testing
and experimentation on a global scale. Standardization produces useful results best if there is
simultaneous prototyping of the works in progress, to feed back implementation experience into
the standardization work. Implementation experience is also a requirement for progress in the
IETF standardization process. Reference implementations also serve others who are
implementing or testing implementations.

The PARSONS team realized that freely and openly available software implementations were
a critical method in this project. Open source reference implementations

• provide a vehicle for academic study

 Approved for Public Release; Distribution Unlimited.
4

• provide a vehicle for experimentation and study by users (registries, network operators,
etc) prior to deployment

• avoid the barriers to early adoption and use that come from restrictions on use

• provide a reference and basis for future commercial development

• provide an implementation for network operators to use internally operationally before or
instead of commercial implementations

The software methods we used are described in Section 3.2.

3.1.3 Security Solutions: Parallel Existing Systems. Security solutions function best (or at all)
when they parallel closely the systems being protected. The close parallel ensures that the
structures and behaviors of the system can be matched by structures and behaviors of the security
solution. We followed that paradigm in designing the comprehensive BGP security solution,
paralleling the BGP steps in producing a route and paralleling the existing system for allocating
address space.

As mentioned, the BGP protocol produces a route to a network address in two steps. First, an
autonomous system (AS) (e.g., an enterprise, an Internet Service Provider network, etc.)
originates a BGP route. This origin autonomous system creates a BGP route including only its
autonomous system number (ASN). Second, an autonomous system propagates routes it has
received from one neighbor to other neighbors, appending its ASN to the path of ASs recorded in
the BGP route.

The comprehensive BGP security solution parallels the two steps of producing a BGP route to
an address.

The initial, base step of the comprehensive BGP security solution parallels the initial, base
step of producing a BGP route - by providing assurance that the AS originating a route has the
authority to do so. Only one with the right to use an address may grant the authority to originate a
route to the address. An important component of this part of the solution is providing assurance
of that right to use an address.

The right to use an address derives from the Internet resource allocation system. In this
system, Internet Assigned Numbers Authority (IANA) holds the authority to allocate Internet
network resources, including addresses and ASNs, for use in the Internet. IANA allocates large
blocks of network addresses to the Regional Internet Registries (RIRs) that are responsible for
address allocations to their members in their respective regions. (A block of address space is
sometimes called an address prefix.) The RIR members may further suballocate from the
addresses they receive to their members or customers. In any allocation, a resource holder may
suballocate only from the address space it itself holds. The prefix allocation system provides a
tree of the address allocations and suballocations.

The IETF work in progress at the start of this project had begun to define a RPKI architecture
that provides strong cryptographic assurance of the right to use an address. Because the RPKI is
designed to protect the address allocation system, it was designed to mirror the allocation system,
so that each allocation is mirrored by a cryptographic assertion of the allocated address space.
The RPKI structure parallels the tree structure of the address allocation system.

 Approved for Public Release; Distribution Unlimited.
5

Based on the RPKI assurance of the right to use the address. the IETF work in progress
provided cryptographic assurance that an AS is authorized to originate a BGP route to a address
(a Route Origin Authorization (ROA)).

The second step of the comprehensive BGP security solution parallels the second step of BGP
route creation, by providing assurance that the path recorded in the BGP route was propagated
properly by each AS mentioned in the path. The origin validation assurance is the proper base
step for the solution, since the base step for construction of a BGP route is origination. However,
this is not a comprehensive solution. With origin validation alone, an AS might construct a path
for a BGP route with a valid origin and propagate the route as if it had received it from the
authorized origin. That would circumvent the origin validation protections, and would produce a
corrupt path.

In our design of a comprehensive solution, we took care that the path validation protection
mirrored the BGP route propagation step. The protections are carried in a BGP attribute that is
augmented when the AS path in the BGP route is augmented. The attribute demonstrates that the
AS path was constructed properly as the BGP route was propagated. Special considerations were
introduced to parallel recognized common legitimate BGP operations.

3.1.4 Comprehensive Solution: Distinct Strategies for Solution Components. Because origin
validation can be established by reference to information external to the BGP protocol (the right
to use an address), but path validation relies on the behavior of the BGP protocol (the
propagation of a BGP route in a BGP Update), the strategies of the two solution components
were quite different.

Origin Validation Strategy. At the time this project started, the IETF had already adopted the
RPKI and origin validation as standardization activity in the IETF Secure Inter-Domain Routing
(SIDR) working group. However, the specification documents were still works in progress and
there had been no deployment.

The goal of the origin validation component of this work was to advance the documents in the
IETF standards process to publication, to simultaneously and continuously maintain a reference
implementation, and to work with the community to begin test, evaluation, production and
deployment.

As an outgrowth of this methodology, the PARSONS team introduced new features to the
architecture in recognition of deployment barriers. Of particular note are local RPKI caches and
local control over trust decisions. The PARSONS team introduced local RPKI caches in
recognition that it would be burdensome for a router to maintain synchronization with the global
RPKI system and to perform the RPKI cryptographic checks necessary. RPKI caches local to a
network perform the global synchronization and validation and communicate only the
information necessary for origin validation to the router. The PARSONS team introduced local
trust anchor management [30] as a means by which an AS could impose constraints on the RPKI
data and give priority to local trust decisions. This allowed each AS to have distinct private
RFC1918 [42] address space, or override RPKI data for address space it considers its own, for
example.

 Approved for Public Release; Distribution Unlimited.
6

Path Validation Strategy. As this project began, the IETF had not yet adopted any
standardization activity to address BGP path validation. There was no identified solution for path
validation. Consequently, the methods chosen to produce this component of a comprehensive
solution were much different from origin validation.

The PARSONS team chose to assemble an ad-hoc volunteer design team, supplementing the
PARSONS team with additional personnel from the operations, security and policy communities.
The design team membership was fluid, as others with insight into particular topics were asked to
participate from time to time. This design team interacted regularly to design and polish a path
validation solution.

When the path validation solution was deemed to meet the IETF expectations for an adequate
start for standardization activity, the team submitted the design to the SIDR working group for
adoption. From that point on, the PARSONS team continued to pursue standardization within the
IETF process, where the path validation solution was named BGPSEC.

As support of the standardization process, the PARSONS team produced a reference
implementation of the path validation solution.

3.1.5 Deployment: Proactive Advocacy. In order to further test and acceptance in the
community, the PARSONS team, particularly DRL, began to provide tutorials to the important
stakeholder communities. From this grew hands-on workshops, where participants could use the
RPKI reference implementations in real time. Feedback from the participants, and recognition of
their desire to see origin validation work in an operational environment, led to changes to the
workshop platform. Eventually, the workshop provided hands-on, real-time experience with all
steps of the use of the RPKI, from initial certification of resources and creating their own CA to
configuration of an Internet connected router running commercial router vendor releases and
experimenting with RPKI based routing decision policies. The PARSONS team recognized the
operators need to experience the use of this new technology in familiar operational settings.

The PARSONS team chose a paradigm of frequent interaction with other RPKI implementers
and users, doing interoperability testing at common venues and assembling implementers and
users for “hack-a-thons”, to jointly build and test software in a communal environment. This
paradigm proved beneficial as the communal environment provided quick resolution of
individual problems and strong immediate feedback of issues to the respective implementers.

As policy issues began to arise outside and inside the technical communities, the PARSONS
team advocated for this solution. Where concerns arose from uncertainty or misunderstanding,
the PARSONS team provided accurate information about the features of the technology.

3.2 Software Reference Implementation Designs
This project produced three different software packages:

rpki.net: rpki.net is an open source implementation of both the Certification Authority (CA)
and the Relying Party (RP) functions in the RPKI. As part of the relying party function, it
includes an implementation of the rpki-rtr protocol that provides communication of RPKI
data between an RPKI cache and a router.

RPSTIR: Relying Party Security Technology for Internet Routing (RPSTIR) is an open source
implementation of the relying party functions in the RPKI, including an implementation of
the rpki-rtr protocol [10] and local trust anchor management [30], as well as a stringent set

 Approved for Public Release; Distribution Unlimited.
7

of tests to prove a relying party implementation is correctly detecting errors in RPKI
certificates. A relying party implementation passing these stringent tests can be used to
rigorously test a CA’s compliance with the RPKI specifications.

BGPSEC: BGP Security (BGPSEC) is an open source implementation of the BGPSEC path
validation protocol specification that is a work in progress [32] in the IETF SIDR working
group.

Together these implementations provide a complete environment for a comprehensive
solution for BGP security in the internet, both origin validation and path validation. The three
software packages are discussed separately in the following sections.

3.2.1 Software: Rpki.net. The rpki.net software package implements both the production (CA)
and relying party (RP) functions of an RPKI environment.

Figure 1, below, shows the overview of the rpki.net architecture. See the rpki.net document
“RPKI Tools Manual” [45] for more information.

 Approved for Public Release; Distribution Unlimited.
8

Figure 1: rpki.net

 Approved for Public Release; Distribution Unlimited.
9

3.2.1.1 Relying Party Tools. Those who operate routers and want to use RPKI data to help
secure them, will make use of the relying party tools. These tools implement the "relying party"
role of the RPKI system, that is, the entity which retrieves RPKI objects from repositories,
validates them, and uses the result of that validation process as input to other processes, such as
BGP security.

The RP main tools are rcynic and rtr-origin. rcynic is the primary validation tool. It does the
actual work of RPKI validation: checking syntax, signatures, expiration times, and conformance
to the profiles for RPKI objects. The other relying party programs take rcynic’s output as their
input. rtr-origin is an implementation of the rpki-rtr protocol, using rcynic’s output as its data
source. rtr-origin includes the rpki-rtr server, a test client, and a utility for examining the content
of the database rtr-origin generates from the data supplied by rcynic.

3.2.1.2 Certificate Authority (CA) Tools. Those who control RPKI resources and need an
engine that supports requesting certificates, issuing ROAs, or issuing certificates to other entities,
will make use of the CA tools.

The RPKI CA engine is an implementation of the production-side tools for generating
certificates, CRLs, ROAs, and other RPKI objects. The CA tools are implemented primarily in
Python, with an extension module linked against an RFC-3779-enabled [29] version of the
OpenSSL libraries to handle some of the low-level X.509 details.

(Since CAs are generally also relying parties (if only so that they can check the results of
their own actions), network operators who operate a CA will likely use the relying party tools as
well.)

The RPKI CA engine consists of a certificate issuance engine, a publication engine, and a
registry backend. The separation of the certificate issuance engine from the publication engine
allows for multiple certificates issuance engines to use the same publication engine. This also
allows the publication to be publicly accessible, as is necessary, but the certificate issuance
engine to be more protected.

The certificate issuance engine has a protocol (officially called the provisioning protocol [18],
but known commonly as the up-down protocol) for making requests to its parent in the RPKI tree
and responding to requests from its RPKI children. The publication engine has a publication
protocol to speak to certificate issuance engines [48]. The certificate issuance engine and the
registry backend communicate with a protocol called the “left-right” protocol. (Because it is
expected that the CA backend processes and databases will be a local choice, there was no
attempts to standardize the left-right protocol.)

The RPKI CA engine includes the following programs:

• rpkid: rpkid is the main RPKI certificate issuance engine daemon.

• pubd: pubd is the publication engine daemon.

• rootd:] rootd is a separate daemon for handling the root of an RPKI certificate tree. This is
essentially a stripped down version of rpkid with no database, no left-right protocol
implementation, and only the parent side of the up-down protocol. It’s separate because the
root is a special case in several ways and it was simpler to keep the special cases out of the
main daemon.

 Approved for Public Release; Distribution Unlimited.
10

• IRBE: irdbd, rpkic, and the GUI collectively make up the "Internet registry back end"
(IRBE) component of the system.

• irdbd: irdbd is a sample implementation of an Internet Registry Database (IRDB)
daemon. rpkid calls into this to perform lookups via the left-right protocol.

• rpkic: rpkic is a command line interface to control rpkid and pubd.

• GUI: A web-based graphical interface to control rpkid and pubd(described in section
3.2.1.3).

3.2.1.3 Rpki.net GUI Interface. In order to make the system easier to operate for end users, the
need for a graphical interface to serve as a front end to the RPKI became apparent. A HTTP-
based system was deemed the best way to achieve cross platform availability since every end
user system has a graphical web browser available.

On the server side, the choice was made to make use of the Django [37] web framework,
which allows for rapid prototyping of web applications. Django is open source, widely used, has
excellent documentation, and has a very active community to draw on for help.

The initial design goal for the web interface was to provide a "dashboard" that a user could
view to get an overview of all RPKI resources under the user’s control. This dashboard presents
information about: RPKI parents, children, repositories, ROAs. The dashboard view also
attempts to draw the user’s attention to resources that are not covered by any ROA, in order to
prevent inadvertent "unknown" validation results.

The web interface also helps perform some validation when the user attempts to create a
ROA, such as ensuring that the resources are actually under the user’s control.

Internally, the web interface is a front end to the IRDB and rpkid daemons. The web interface
makes queries to rpkid to fetch the list of RPKI resources under a particular user’s control, and
this information is stored in a database, from which the display in the web application is
generated. As the user requests changes, such as creation of ROAs, the web interface makes
changes to the IRDB, and notifies rpkid that it should contact irdbd to process those changes.

Since a resource holder is also interested in how other relying parties may view their origin
authorizations, the web interface also allows the user to see the validity status of all routes that
are covered by resources listed in their resource certificates. In order to perform this step, two
additional sources of information need to used: the global RPKI for route authorizations, and
RouteViews [44] for a snapshot of the current globally announced routes.

The snapshot of the global RPKI is generated by processing the output of the rcynic tool,
described in section 3.2.1.1. This output consists of an Extensible Markup Language (XML) file,
and a directory of resource certificates, ROAs, and Ghostbuster objects. For each object that was
considered valid within the RPKI, the web interface software reads the repository objects and
extracts information into a database that drives the web application display. Using this data, it is
possible to perform the RPKI route origin validity checks that other relying parties will conduct,
and give visual feedback to the user if there are route origins that are invalid or unknown.

 Approved for Public Release; Distribution Unlimited.
11

The RouteViews project produces a dump of the global routing table every two hours. This
dump is a merge of views from multiple sensors, so it gives a very good overview of the actual
state of the global routing tables. A batch job runs in the background every two hours to fetch this
data and import it into the database used by the web application. This allows the web interface to
quickly find globally announced routes that are covered by RPKI resource certs and ROAs.
Combined with the data from the global RPKI, the validity status of each route can be calculated
and displayed for the user.

In the next design phase, a need for alerting the user about potential problems with their route
origin validity outside of the web interface was identified. For example, if a resource certificate
somewhere in the chain will expire soon, the user may want to be notified immediately via an
email rather than waiting until the next time the user opens the web interface. Since data from the
global RPKI is updated hourly, and the RouteViews data is updated every two hours, feedback to
the user can be generated relatively quickly in order to rectify any problems. In addition to the
expiration checks mentioned above, other types of common problems that can be detected are:
changes in resource delegated to a resource holder, route origin validation status changes from
valid to unknown or invalid, and new routes appearing that are not covered by existing ROAs.
Where there are Ghostbuster objects published for resource certificates up the chain, the alert can
provide human contact information from those records. This can be useful in the situation where
the contact for a resource holder’s RPKI parent can’t immediately be contacted, and it may not be
obvious how to contact the RPKI grandparent.

3.2.1.4 Documentation and Development Environment. The rpki.net software is kept in a
subversion repository, from which binary packages are built nightly for a small set of popular
unix operating systems.

Documentation for the tools is written on the wiki hosted at rpki.net. The wiki pages are
organized in a way that allows automatic conversion to a full document covering installation and
use, for offline reading.

3.2.1.5 Software Dependencies. In keeping with the decision that the rpki.net software should
be freely and openly available, the rpki.net software makes extensive use of several open
software packages and libraries. This also allowed the implementers to focus on the features that
are RPKI unique. The packages were chosen for their wide use, active user community for
support and active implementation community for feature enhancement and bug fixes.

• MySQL: MySQL is a widely used and popular open source database package. It was
chosen for database support in the rpki.net package.

• Apache: Apache is a commercial grade web server package used in the rpki.net user
interface.

• OpenSSL: OpenSSL is a widely used implementation of many cryptographic features,
including support for X.509 Public Key Infrastructure, XML, and many different
cryptographic algorithms.

• Python: Python is a general purpose, high level programming language, recognized as
being easy to learn, providing compact and efficiency in coding, and as a consequence
providing ease of implementation and lower maintenance burden.

• libxml: libxml is a library providing an API for manipulating Extensible Markup Language
(XML) data

 Approved for Public Release; Distribution Unlimited.
12

• YaML: YaML is a human-readable data serialization format for all programming
languages

• Django: Django is a high-level Python Web framework that encourages rapid development
and clean, pragmatic design.

3.2.2 Software: RPSTIR. The PARSONS team member Raytheon BBN Technologies created
an open-source release of the Relying Party Security Technology for Internet Routing (RPSTIR,
pronounced "rip-stir"). RPSTIR provides relying party tools to retrieve and verify Resource
Public Key Infrastructure (RPKI) objects contained in the world-wide system of RPKI
repositories.

RPSTIR helps network operators detect and reject accidental, false route origin
advertisements, thus reducing the likelihood of inadvertent Internet address space hijacking.

RPSTIR synchronizes with the global RPKI repository system, verifies the data, and extracts
a list of authorized prefix-origin AS pairs. This list is precisely the information a router requires
in order to detect false BGP origin announcements.

RPSTIR implements the RPKI to Router Protocol (rpki-rtr, RFC6810[10]), allowing routers
to communicate with RPSTIR to verify route origin announcements and detect false origin
announcements due to errors by network operators (e.g., the Pakistan Telecom hijack of
YouTube address space [43]).

RPSTIR also implements the local trust anchor management [30].

Figure 2, below, shows the overview of the RPSTIR architecture.

 Approved for Public Release; Distribution Unlimited.
13

Figure 2: Overview of RPSTIR Implementation

The RPSTIR software is composed of several components.

3.2.2.1 RPKI synchronization and local caching. The rpstir-synchronize utility of RPSTIR
uses the rsync protocol to synchronize with the global RPKI repository system and create a local
rsync file cache. The utility must be run periodically to keep it in sync with the global RPKI.
Users must configure their system using Cron or another time based job scheduler to run rpstir-
synchronize at an interval appropriate for their system.

After the local file cache has been synchronized, the rsync_aur utilty parses the
sychronization log file and passes updated configuration information to the rcli utility. The rcli
utility validates the RPKI objects and extracts a list of authorized prefix-origin AS pairs to a local
RPKI database cache. This local database cache can be queried using the rpstir-query utility.

 Approved for Public Release; Distribution Unlimited.
14

3.2.2.2 RTR Server; Route Origin Verification. RPSTIR implements the RPKI to Router
Protocol (rpki-rtr, RTR), which creates flexibility in the deployment of RPKI in a network. Using
the rpki-rtr protocol, RPSTIR can be hosted anywhere in the router’s network, sparing the router
the burden of the synchronization and cryptographic validation. RPSTIR would produce the local
RPKI database cache and act as an rpki-rtr server. Routers could communicate with the RPSTIR
rpki-rtr server to retrieve the list of authorized prefix-origin AS pairs, and use that information to
verify route origin announcementa and detect false origin announcements.

The rpstir-rpki-rtr-update utility updates the local rpki-rtr cache and should be called after
rpstir-synchronize.

RPSTIR also offers an Routing Policy Specification Language (RPSL) output option,
enabling operators to generate route filters compatible with existing, deployed router and
operations software.

3.2.2.3 Compliance Tools. RPSTIR provides fine-grained, stringent compliance tests for
relying party code. These test cases can be used to test any relying party implementations for
compliance with published RFCs and Internet-Drafts, testing that compliant RPKI objects pass
the tests and non-compliant objects fail. Additionally, relying party software that passes the tests
can be used to test the output of a CA, to ensure that the CA is producing compliant products.

3.2.2.4 Software Dependencies. RPSTIR depends on several other open source packages.

• MySQL: MySQL is used for the the local RPKI database cache.

• OpenSSL: OpenSSL is used for cryptographic libraries for X.509 certificates.

• ODBC mySql Connector: ODBC (Open Database Connectivity) is a standard
programming interface (API) for accessing database, used to connect with the local RPKI
database cache.

• rsync: Rsync is used to synchronize a local file cache of global RPKI data.

• Python: Python is a programming language that lets you work quickly and integrate
systems more effectively.

• Netcat: Netcat is a networking utility which reads and writes data across network
connections.

• Cryptlib: Cryptlib is a library which provides implementations of complete security
services via a simple high level programming interface (API).

• cURL: cURL is a command line tool and library for transferring data with Universal
Resource Locator (URL) syntax (e.g. HTTP, FTP, etc).

• OpenSSH: OpenSSH provides utilities and libraries for Secure Shell (SSH) access.

3.2.3 Software: BGPSEC Implementation. As part of developing and deploying BGPSEC,
this project produced a proof-of-concept implementation of the BGPSEC protocol [32]. The main
goals for the implementation are:

• An open source, freely available reference implementation of the BGPSEC protocol.

• For academic study

• For ISP internal use/testing

 Approved for Public Release; Distribution Unlimited.
15

• A functional software router to provide operational experience and feedback into the
protocol design.

• Proof-of-concept code suitable to support advancement of the BGPSEC specifications
within the IETF.

• A basis for future development and use of the protocol.

In order to fulfill these goals, a survey of open source routing software was conducted to
determine both whether we should create our own software package or build off of one the
existing software packages and which one to use if we chose to go with existing router software.
The choice of the BIRD [7] software package determined the programming language used: C.

BIRD provides an implementation of BGP that includes origin validation. The BIRD origin
validation relies on an external ROA table that lists the authorized AS originators of a route to
any prefix. A process external to BIRD is expected to populate that table, in order that the origin
validation not be tied to any particular method of supplying that information.

The RPKI is a source of the authorized AS originators information that is needed. It also
provides the public router keys. Our BGPSEC implementation provides the required external
process, bgpsec-bird-client, which retrieves the authorized AS and prefix information from an
RPKI cache and populates BIRD’s internal ROA table. It also retrieves router public keys to
make them available for the BGPSEC code.

The build process was also determined by the choice of routing software: automake. The
cryptographic code within the BGPSEC implementation also requires OpenSSL libraries that
support Elliptic Curve Digital Signature Algorithm (ECDSA).. The bgpsec-bird-client requires a
version of RTRlib that supports router key retrieval. A multi-user accessible source code version
control system was created using git for code development. The implementation developers
interacted with he Secure Inter-Domain Routing (SIDR) Working Group [49] and the protocol
developers to provide feedback for the protocol development.

 Approved for Public Release; Distribution Unlimited.
16

4 RESULTS AND DISCUSSION
The PARSONS team’s efforts have directly provided or supported a great leap forward in the
security of the Internet’s routing infrastructure.

4.1 Comprehensive Solution
The comprehensive solution developed in this project encompasses both origin validation and
path validation.

Origin validation is based on the right to use a prefix. That right to use is represented and
demonstrated in the RPKI developed in the IETF SIDR working group. The RPKI [26] mirrors
the address allocation system. An address allocation is represented as an X.509 certificate [21]
that binds a public key to a list of resources, i.e., addresses or ASNs. Each ISP allocated an
address can be issued a CA certificate for the allocation and can then issue certificates when it
suballocates to customers. The RPKI includes the ability to reclaim an address by revoking the
certificate, represented in a CRL.

The authorization to originate a BGP route to an address is represented in a Route Origin
Authorization (ROA) [27], a signed object that is verified by an RPKI certificate for the address.
If and when the authorization is no longer appropriate, the ROA can be revoked by revoking the
certificate that issued it.

Each CA maintains a repository, or publication point, [19] of all the certificates and ROAs it
has produced. The repository also contains a manifest of all the contents [3] and a ghostbuster
record [8] giving contact information.

The relying parties retrieve the RPKI certificates and signed objects from the globally
distributed system of RPKI repositories and cryptographically validate the certificates and
objects. The pairs of authorized AS and prefix can then be used to judge the validity of a BGP
route [33].

The deployment architecture includes a local RPKI cache, which is responsible for
synchronization with the global system of RPKI repositories and validation of what it retrieves.
The local RPKI cache communicates just the authorized AS - prefix pairs to a router in the RPKI
to Router protocol, known as rpki-rtr [10]. The rpki-rtr protocol is a light-weight query/response
protocol that allows a router to retrieve just the extracts of RPKI data needed to validate BGP
routes from a local RPKI cache.

Local trust anchor management [30] introduced a means by which an AS could impose
constraints on the RPKI data in accordance with local trust decisions. This allowed each AS to
have distinct private RFC1918 [42] address space, or override RPKI data for address space it
considers its own, for example.

Considerations of operational use are described in [9], with consideration of key or algorithm
change in [20] and [16].

 Approved for Public Release; Distribution Unlimited.
17

The path validation component provides cryptographic assurance that a BGP route was
propagated through the ASs that appear in the AS path carried in the route. This prevents path
spoofing and also prevents circumvention of the origin validation protections. The protocol
extension to BGP that provides the path validation is called BGPSEC [32]. BGPSEC defines a
new attribute to be carried in a BGP route. A BGPSEC capable router adds a new attribute
segment to the BGP routes it sends. Each BGPSEC attribute segment contains a signature of the
received route’s signature (which protects the received AS path), the origin AS, the prefix, and
the AS to which the BGP route is sent. Including the recipient AS in the signature prevents
cutting and pasting sections of protected paths in order to produce a spoofed path. The recipients
check the signatures on the attributes to establish that the path valid.

Because each router produces signatures for BGPSEC attributes on the BGP routes it sends, it
needs a key to use to sign the attributes and a certificate others can use to verify that signature. A
work in progress in the SIDR working group [31]specifies a new certificate in the RPKI to certify
a router’s public key, which must be issued by the AS to which the router belongs. Each router
needs a certificate for its own key, for others to use to verify the signatures it produces. Each
router also needs the certificates of other routers to verify their signatures in the BGPSEC
attributes it receives. Because the router certificates are part of the RPKI, they will be part of a
local RPKI cache. The rpki-rtr protocol can carry the router information needed from the cache to
the router. (This is presently a work in progress in the SIDR working group.)

4.2 Project Success in Standardization
The PARSONS team has produced much of the progress that has occurred in the standardization
of a comprehensive BGP security solution.

At project start, there were no IETF published specifications for BGP security, although there
were 9 documents that were works in progress in the SIDR working group in the IETF. The
works in progress addressed origin validation only. It was not until Feb 2012 that any of the
works in progress were mature enough for publication by the IETF as RFCs.

At this point, with PARSONS leadership and energetic participation, there are 24 RFCs
published by the IETF from the SIDR working group. Of those 24 RFCs, 18 are co-authored by
members of the PARSONS team. (See the Appendix for a list of the PARSONS team co-
authored documents.) There are 17 documents that are still works in progress in the SIDR
working group, of which 13 are co-authored by the PARSONS team.

Standardization of the comprehensive solution is not yet complete. Most of the progress to
this point has been for origin validation. The path validation solution, which was developed by
the PARSONS assembled design team, was adopted by the IETF SIDR working group as a set of
related documents. Some of those documents have been published by the IETF ([23], [5]). The
BGPSEC protocol specification is mature, but has not yet progressed to publication by the IETF.
Furthermore, deployment experience is showing operational aspects of origin validation that may
lead to further standardization activity.

4.3 Project Design Success
The project design as explained in Section 3.1 has produced strong results for the project.

 Approved for Public Release; Distribution Unlimited.
18

4.3.1 Results: Team Multi-Stakeholder Constituency. The inclusion of participants from
multiple stakeholder communities in our PARSONS team and in our assembled ad-hoc design
team has proven to be an effective strategy, providing strong benefits to progress in the project.

The operation-knowledgeable members of the PARSONS team recognized that
synchronizing with the global RPKI repositories and cryptographically validating the RPKI data
would be a performance burden for routers in a network. The team introduced a local RPKI cache
into the architecture of RPKI use in a network, in order to relieve the routers of that burden. The
PARSONS team jointly designed and specified a rpki-rtr protocol for the communication
between the local RPKI cache and the router. The rpki.net and the RPSTIR packages both
contain implementations of the rpki-rtr protocol.

Security members of the design team identified a significant security vulnerability of a design
choice early in the consideration of a path validation solution. The design choice was whether to
allow or an AS to add protections to a path that was unprotected when received. The term
invented for this was “partial path signing”. The security members noted that this was a privilege
elevation and therefore introduced an attack possibility. If an AS invented a bogus path, then
added the path validation protections to it, and claimed falsely that it had received that bogus
path, the protected path might look preferable to neighbors who would be deceived.

The operators on the PARSONS team noted the very common operational practice of
duplicating the local ASN multiple times in the AS path in the BGP route (“prepending”), a
technique used in order to influence a neighbor’s routing decision. The protocol designers on the
team were able to respond to this information and adjust the design to efficiently protect the
duplicated information. The adjustment was simple - to use a counter to represent the duplication.

The path validation design team was able to identify and respond to other common practices
that are deviations from the BGP standard and accommodate them in the BGPSEC design.

Operators identified a common practice at Internet exchange points, where the exchange
point provides a route service that forwards BGP updates between the members. The route server
does not add its AS to the path in order to avoid increasing the apparent path length. This
invisible AS violates BGP path construction and would have been prevented by the path
validation solution. The protocol designers on the PARSONS team were able to accommodate
this behavior in the path validation protections, by employing a 0 value for the prepending
counter. A potential for misuse of this feature was prevented by requiring explicit configuration
to allow a neighbor’s use of a 0 counter.

Concern was raised in the working group about support in path validation for AS mergers.
Organizations that acquire or merge two ASs must migrate the ASN used in their routers and
their customer’s routers from one of the AS numbers to the other. The migration must take place
incrementally and carefully over time. Techniques are widely implemented by router vendors that
allow that migration. However, these techniques temporarily make it appear that a router is
masquerading as belonging to multiple ASs, and could have been prevented by the path
validation solution. Again, the protocol designers on the PARSONS team noted the problem and
were able to demonstrate that the design accommodated the migration techniques.

PARSONS team members’ personal interactions with router vendor developers was an
assistance to the router vendor implementation activities.

 Approved for Public Release; Distribution Unlimited.
19

4.3.2 Results: Deployment. In Jan of 2011, individual RIRs began production service of RPKI
certification of resource allocations in their regions. At this point, all RIRs are in production. This
uptake by a critical member of the address allocation hierarchy indicates that the RPKI is an
acceptable solution.

The take-up for the RIRs is increasing in each region. RIPE easily has the strongest
membership deployment. Over 20% of their members have requested certification, and over 7000
prefixes are certified, encompassing about 4 /8 address blocks[13].

Commercial router vendors have added support for origin validation and for the rpki-rtr
protocol to their router software releases. Both Cisco and Juniper have included these features in
their releases, starting in 2012. Support for RPKI is available for any network operator who is
using the current software releases.

Both rpki.net and RPSTIR have implemented tools to produce simple routing registry route
objects from ROAs, based on a recommendation of a major RIPE ISP operator. These tools allow
an easy deployment path for RPKI in a network by reusing tools for the existing best operational
practice that builds filter lists from routing registries.

Deployment and use has begun, albeit barely. An Ecuador Internet Exchange Point [6] was
able to work with their members and the Latin American Network Information Center, their
regional RIR, to certify almost 100% of the resources in their country. They used the rpki.net
software as one of two redundant relying party packages. They also announced that they would
begin to employ the RPKI data to reject invalid BGP routes in their exchange. A few networks
have spoken on the North American Network Operators Group (NANOG) mailing list that they
have RPKI use on their networks planned for this calendar year[52, 24]. Simulation studies [51]
have shown RPKI deployment at a small number of major ISPs would protect the majority of the
Internet. A Lyon IXP has recently announced [1] that they have “set up an alternative filtering
method of its members’ BGP route advertisements” using RPKI and ROAs. The French
L’Agence Nationale de la Sécurité des Systémes d’Information (ANSSI)” has published a report
([2, 11] in which they recommend “utiliser la certification RPKI (Resource Public Key
Infrastructure) et déclarer des ROA (Route Origin Authorizations),” (“use RPKI certification
(Resource Public Key Infrastructure) and declare ROA (Route Origin Authorizations)”,
according to an online translation service).

4.3.3 Results: Proactive Advocacy. The PARSONS team has held hands-on, real-time,
workshops in every RIR region. These workshops have given the participants a full experience of
using the RPKI - from requesting certification of resource, to running their own RPKI CA, to
configuring Internet-connected routers to reject prefix hijacks. These workshops use the rpki.net
software as both a RPKI CA and as a relying party platform.

The PARSONS team created a testbed community of early adopters who want to experiment
with the RPKI but did not wish to do so with their operational networks. For this purpose, an
alternative root of the address allocation hierarchy, called altCA, was created so as to issue
certificates to the experimenters. Even if these certificates should be used in the global
InternetSome of these early adopters had address space allocated to them from IANA before the
creation of the RIRs.

PARSONS members were able to interact with communities to allay fears of the use of the
RPKI. In specially noted occasions:

 Approved for Public Release; Distribution Unlimited.
20

• Two PARSONS team members appeared in an invited panel discussing the use of the
RPKI at a RIPE meeting when the membership was voting on a motion to continue or halt
participation in the RPKI. The motion to continue passed.

• A PARSONS team member participated in the Federal Communications Commission
(FCC) Communications Security, Reliability, and Interoperability Council III (CSRIC III)
Working Group 6 - Secure BGP Deployment. The final recommendation of that working
group, while not a wholesale endorsement of the use of the RPKI origin validation,
includes in its recommendations [14] the desirability of resource certification and cautious,
staged deployment.

• A PARSONS team member worked with the RIPE community to careful organize a series
of policy proposals that would lead to the certification of legacy address space, i.e.
addresses allocated before the RIRs were created [47, 40].

4.4 Results: Rpki.net
The rpki.net code is the only fully compliant implementation of both the CA and relying party
parts of the comprehensive solution, including the works in progress in the SIDR working group,
such as router certificates.

The rpki.net package implements features discovered to provide performance benefits. The
rpki.net package implements a hierarchical file structure, which proved to have such performance
benefits for rsync synchronization that other implementations have adopted that approach. It also
implements parallel download of RPKI data for syncrhonization improvements, a feature
suggested by the RPSTIR project.

The rpki.net implementation of the CA and RP daemons (rpkid, pubd, etc) supports multiple
entities, e.g., multiple CAs supported by one publication engine. The irdbd also supports multiple
entities. That means that it is possible to extend the hosted model, such as the RIRs use to provide
CA services for their members, to outsourcing the publication services for any CA. The rpki.net
package also implements the publication protocol [48], which provides communication between
the CA issuance engines and the publication service provider.

4.4.1 RPKI Supporting Protocols. The rpki.net package has served as the platform for
investigating new protocols during design and specification stages. Consequently, rpki.net
includes implementations of protocols that are still works in progress.

The “out of band” setup protocol [39] was created in early testing as an improvement in
boostrapping the initial relationships between parent and child engine daemons and between
publication protocol clients and servers. This protocol proved so useful to early adopters and in
early testing that it was brought to the SIDR working group for standardization.

The rpki.net code contains implementations of both the rpki-rtr server and the rpki-rtr client
of the rpki-rtr protocol, including the enhancements to the rpki-rtr protocol in progress in the
SIDR working group for communication of router public keys to the router [41].

As just mentioned, the rpki.net code contains an implementation of the publication protocol.

 Approved for Public Release; Distribution Unlimited.
21

4.4.2 Testing Scripts. The rpki.net implementation has the ability to represent an entire test
network in a single easy to understand configuration file. It has the ability to write programs
which generate those test configurations, which also proved to be useful, particularly for large
scale testing.

The rpki.net implementation was the test subject for modeling BitTorrent as a potential RPKI
transport protocol using the Starbed large scale emulation testbed [50]. A small number of very
large scale configurations used there was a valuable output of that work[36], especially in terms
of improving the core code. Initial testing was done with hand-constructed test objects. The large
scale testing made possible by the test generation scripts helped identify implementation issues
that would otherwise have been missed.

The rpki.net implementation also includes scripts for generating large numbers of router
certificates, as would be needed in any testing of BGPSEC implementations.

4.4.3 Balance Between Performance and Agile Coding. The rpki.net code uses both Python
and C, with the choice made for performance reasons. Python is noted for its benefits in agile
coding, and for its lower maintenance burden. This is particularly important when new protocol
design choices are being explored - the faster development cycle is a help. Much of the rpki.net
code originally written in C was converted to Python to adopt these advantages. However, there
are places where C is needed for tasks that are performance sensitive. In rpki.net, C is used for
cryptographic functions as well as the Abstract Syntax Notation One (ASN.1) and XML
processing. C/Python API code was written to make the same functionalities available to the
Python modules. The rcynic is the only remaining non-library C code, left in C because it needs
to handle many low level details of the protocols like X.509 and Cryptographic Message Syntax
(CMS) that the RPKI objects use, and the ASN.1 that underlie them.

4.4.4 Documentation and Development Environment. The database use in the rpki.net GUI
uses the Django Object-Relational Mapper (ORM). This makes it simpler to change the
implementation to a different implementation of SQL, e.g., SQLite instead of MySQL. This also
permits use of Djang’s “South” module to manage ugrades to the database schema, which
minimizes impact on the users from such a change.

The rpki.net software is kept in a subversion repository, from which binary packages are built
nightly for a small set of popular unix operating systems.

Documentation for the tools is written on the wiki hosted at rpki.net. The wiki pages are
organized in a way that allows automatic conversion to a full document covering installation and
use, for offline reading. The full manual is updated nightly and checked into the subversion
repository when there are changes.

4.4.5 Rpki.net GUI. The final design of the web interface was a result of feedback received
from users over the course of the project. The numerous hands on workshops allowed network
operators to become familiar with the software, and give valuable feedback on how the software
could be improved to support day to day workflow.

An initial example of this feedback was that the original dashboard in the web interface was
primarily focused around RPKI resources. This was a natural result of the developers being
focused on the RPKI itself. However, operators are more interested in a route oriented view,
since this is what they are dealing with. The result of this feedback was to alter the dashboard to
give primary information about currently announced routes and their route origin validity status.

 Approved for Public Release; Distribution Unlimited.
22

After RIPE started its RPKI pilot project which allowed resources holders to host their own
private cryptograhic key material, and communicate via the up/down protocol, there were a
number of users starting to use the software in a semi-production manner, and this provided
additional useful feedback for development. One of the first results of this was a request to have
the web interface support the initial setup process between RPKI parents and children.
Previously, the user needed to use the command line tool to perform this step, but many users
wanted the web interface to support this feature. The process involves uploading and
downloading the XML files generated during the out of band setup procedure.

One ongoing issue that is not completely solved is the lag involved in updating the web
interface display of what other relying party’s view of the global RPKI might be after a user
makes a change to their ROAs or children’s resource certificates. The creation of the ROAs and
resource certificates happens nearly instantaneously, but it takes an undetermined amount of time
for the objects to be published to a repository, and then subsequently fetched by a relying party
and proceed into origin validation results. This is the nature of a distributed, asynchronous
system, but it can be confusing to the web interface user when the origin validation on their
routes does not update as soon as the user submits the changes.

Another class of user that provided useful feedback was ISPs that were interested in
providing RPKI “hosting” services, where customers would not hold their own private
cryptographic key materials, but could use the software to manage their own resources. This is
very similar to what RIRs such as RIPE provide for their members. The result of this request was
that the software added support for separating the roles of resource holder and web interface user.
Instead, the model should be that a particular web interface user may want to manage resources
as several different resource holders, or that multiple users could manage a single resource
holding entity. This more closely models the current situation with how the RIRs manage
resources, where resources for an organization may be managed by several different departments.

4.5 Results: RPSTIR
RPSTIR provides a production quality implementation of the relying party tools necessary to use
the RPKI.

RPSTIR is offered under the BSD open source license model, so everyone is free to modify
RPSTIR to suit individual needs or incorporate it into other products.

Features include:

• Fine-grained ASN.1-level diagnostics for debugging RPKI repositories

• Both RPSL and diagnostic output

• Top-down and bottom-up certification path discovery

• Flexible database architecture (based on MySQL)

• Efficient parallel download of RPKI objects

• Implementation of the Local Trust Anchor functionality [30] for mitigation of CA errors

• Implementation of the server for the rpki-rtr protocol

• statistics collection of the RPKI over time, including incremental updates and multiple
simultaneous statistics collections.

 Approved for Public Release; Distribution Unlimited.
23

• Support for adding files from an existing local cache. In the future, this could be used to
quickly deploy additional relying party machines without requiring each to synchronize
individually with the global RPKI repository system

4.6 Results: BGPSEC Implementation
The main result was the creation of functional software that implements the BGPSEC protocol
specification. The software has been shown to be functional in small test environments. It can
negotiate and open BGPSEC sessions between routers, send and receive BGP UPDATE
messages with the BGPSEC attribute, and check that the messages are cryptographically signed
correctly. While BIRD supports multiple routing protocols including BGP, the code uses a
modular design for the protocols supported. This in turn allowed us to limit most of the code
changes to the BGP protocol module. Figure 3 illustrates the BIRD architecture.

Figure 3: BIRD

 Approved for Public Release; Distribution Unlimited.
24

BGPSEC adds security to BGP routing by providing two major protection features. One is
path authentication. That is, BGPSEC cryptographically authenticates that the series of AS’s that
a BGP prefix announcement claims to have passed through is accurate. The other feature is
network prefix origin validation. Origin validation is validating that the AS which originated a
network prefix is the valid holder of that prefix.

In order to provide path authentication, an additional BGP attribute, the BGPSEC_Path
attribute, is added to a BGP Update message. The BGPSEC_Path attribute contains several
values related to the AS_PATH attribute of the BGP Update message, and signature values that
in turn authenticate the update message and its path. In order to support BGPSEC within BIRD,
we extended the BGP protocol module in BIRD’s routing engine to support BGPSEC attribute
handling and to support the cryptographic signing and validation of data within the BGPSEC
attribute. The credentials, or keys, used to authenticate this data are garnered from the RPKI [26].
Figure 4 shows an expansion of the BGPSEC integration into the BGP protocol module in
BIRD.

Figure 4: BGPSEC Implementation

In order to provide origin validation, the BIRD developers created an interface to create ROA
tables that can be used to filter BGP prefixes based on the prefix’s authorized originating AS
number. The AS/Prefix data can be provided by the RPKI, but that data needs to be gathered and
loaded into the ROA tables by a process outside of the BIRD daemon. RTRlib [38, 54] is an rpki-
rtr client library for retrieving that data from an RPKI cache. Example client software for
accessing that data was created by the RTRlib project as bird-rtrlib-cli. We in turn modified that
code and provide a software client, bgpsec-bird-client, that can be used to populate the ROA
tables in a running BIRD daemon.

 Approved for Public Release; Distribution Unlimited.
25

Additionally, in order to authenticate the signatures within the BGPSEC attribute, the signing
router’s public keys are needed. These keys are available from the RPKI. RTRlib also provides
access to these router keys. The bgpsec-bird-client software was updated to download router keys
and make them available to the BGPSEC code within BIRD. An overview of the BIRD daemon
with BGPSEC and bgpsec-bird-client is shown in Figure 5 below.

Figure 5: Overview of BGPSEC Implementation

There have been multiple releases of the software. The most current feature list follows:

• BGP capability negotiation for the use of BGPSEC in a BGP session

• Creating and parsing of the BGPSEC attribute in a BGP UPDATE message

• Generating and validating signatures within the BGPSEC attribute

 Approved for Public Release; Distribution Unlimited.
26

• Configuration and processing of the confederation flag within the BGPSEC attribute

• Generating and processing the pcount field within the BGPSEC attribute. The pcount value
is used to mimic the practice of prepending multiple copies of an AS number to an
AS_PATH attribute. This is a common practice used in order to make a routing path less
desirable.

• Ability to configure how Valid/Invalid BGPSEC UPDATES are treated. Local policy can
choose how to make use of the Valid/Invalid states in routing decisions.

• Use of RPKI-RTR protocol [10] to get ROA data from the local RPKI cache for Origin
Validation withinBIRD.

• Use of RPKI-RTR protocol [10] to get router public keys from the local RPKI cache to use
for authenticating BGPSEC attribute signatures.

• ASN associated to router keys. Router keys are retrieved from the RPKI data by a
combination of the router’s ASN and the key identifier from the router’s certificate.

 Approved for Public Release; Distribution Unlimited.
27

4.7 Lessons Learned

4.7.1 Workshops. Workshops that provide hands-on, real-time experience with real tools are
beneficial in nurturing user curiosity into experience.

The initial vision for workshops was of a training for actual deployment, with command line
interface suitable for scripting, full software build and installation on a laptop, certification of all
real resources managed or serviced by the participant, etc.

The experiences under this approach made it clear that operator takeup is facilitated by
careful construction of the learning environment. This led to some significant changes in the
workshop.

The command line interface was augmented with a GUI interface. Section 4.4.5 describes
some of the lessons learned in that process.

Platform (OS, packages, versions, etc) variance is so great that building and installing
software takes a large amount valuable time. Workshop environments must provide a simplified
environment in which unessential details are invisible and participants focus only on the essential
topics. More effort was put into producing binary packages for popular platforms to reduce the
effort needed just to participate.

The state of the prefix allocation system is such that it is difficult for some major long-time
operators to know what prefixes they have been allocated and what prefixes have been
suballocated to others and to whom. Rather than have the participants attempt to use resources for
which they are responsible, An experimental allocation was request from ARIN for use as a
workshop subject.

The intent of the workshops changed from an expectation of full certification of all real
resources as if for immediate operational deployment to an opportunity to educate and entice the
operators, improve the rpki.net’s parallel with typical operator practice, and improve the
robustness of the software to odd network environments.

4.7.2 Testing and Deployment Tools. Quick prototype deployment tools can themselves
become targets for standardization. We experienced this both in the design of the rpki-rtr protocol
and in the out-of-band setup protocol. We also experienced this in tools that proved to be so
useful that they were incorporated into the web GUI for rpki.net.

4.7.3 Revisiting Design Decisions as Capabilities are Added. At multiple points in our
implementation history, we discovered that when adding a new capability to the system, it is wise
to revisit past design decisions to determine if those design decisions are still valid in the new
implementation makeup.

Our introduction of a web server was such a case. Initially our code was designed not to
require an external web server. This was no longer the case once we added the Django-based user
interface to the design. In retrospect, we could have reconsidered a few aspects of the overall
implementation design. In particular, there are some tasks that could be simplified using the off-
the-shelf web proxy module that comes with the web server we’re using. It would have let us
prune some unnecessary features out of the code we’ve been maintaining, simplifying future
development and maintenance, and might have led us earlier to a more robust design for users
who want redundant server configurations.

 Approved for Public Release; Distribution Unlimited.
28

The decision to add the Django user interface also brought the Django ORM into use in our
code. In retrospect, we could have converted all of our existing home-grown SQL interface code
to use Django’s ORM. Using the ORM has two advantages. First it allows easier migration to
different SQL implementations. Second, the Django “South” add-on module, which is a tool for
managing SQL schema upgrades, is intended to work with the Django ORM.

At the time, an interest in maintaining the stability of the code and avoid a difficult upgrade
for the users convinced us to retain the existing interface, despite the potential easing of future
maintenance and development. However, it has been necessary to modify the SQL schema since
that decision was made, and the South add-on module would have eased that task.

Decisions made for keeping the code base stable are sometimes good, sometimes regretted
later.

Reusing standard libraries is good. Revisiting old decisions not to reuse standard libraries is
also good: in some cases, one can only really understand why some standard library behaves in
the odd way it does by following at least part way along the implementation path that led to the
strange library behavior, at which point it becomes obvious.

We use lots of standard library code. We also re-implement some things when the available
libraries are clearly insufficient for our needs. The lesson learned here is just that it’s good to go
back and reexamine these decisions every few years, as the decision can change with time.

4.7.4 Testing. Interoperability testing, even if informal, is beneficial. There was cross-
fertilization between the rpki.net and RPSTIR implementations. The rpki.net choice to store the
RPKI data in a hierarchical structure proved to provide better performance, and other
implementations eventually followed suit. The RPSTIR choice to use parallel retrievals of RPKI
data also proved to have performance benefits. Operational experience with rsync led to the
conclusion that parallel fetches would greatly improve the time required for a RP to mirror
repositories. This was adopted by other implementations, including rpki.net.

Interoperability testing between the known relying party implementations using the RPSTIR
compliance tests proved beneficial to all parties. Some tests exposed ambiguities in the
specification, resulting in improvements in the specification. Other tests led to improvements in
the implementations.

Large scale testing (at the Starbed facility) is very useful for software that will be deployed at
Internet scale. The rpki.net implementation served as a test subject for an emulation experiment
testing BitTorrent’s suitability as a RPKI transport protocol. Since the need to replace rysnc as a
transport protocol was in large part due to its inability to scale, this experiment tested
BitTorrent’s behavior at scale. The large scale test configurations developed for that experiment
exposed implementation issues related to the sheer scale of the test. The initial tests had been
hand-configured scenarios which were useful at the time, but which did not stress the
implementation to expose those sorts of issues.

The ability to represent an entire test network in a single easy to understand configuration file
proved useful from the beginning of the rpki.net development. The ability to write programs
which generate those test configurations also turned out to be useful. The large scale test
configurations that were a by-product of the emulation experiment were the experiments chief
benefit, from the viewpoint of improving the code.

 Approved for Public Release; Distribution Unlimited.
29

4.7.5 Tradeoffs between Performance and Agile Coding. Python has a lot of advantages for
quick development: it’s much less fragile than C, and much more concise, so one screen of
Python code can take the place of ten or twenty times as much C code. It is also easier to debug
and maintain. However, while Python is reasonably fast for a higher level language, it is not as
fast as C at certain tasks. Using C for the actual cryptography was an obvious choice: what was
less obvious was that relatively straightforward data encoding in both ASN.1 and XML was
highly performance sensitive and really needed to be done in C. We wrote ASN.1 code in C and
then wrote C/Python API code to make this functionality available to Python.

We learned that the right approach was to prototype in Python, profile to find the hot spots,
and convert to C as necessary for performance.

Maintenance effort can make conversion in the other direction the right approach for some
tasks. Some code written in C in the early days of the project turned out to be more trouble than it
was worth to maintain. Using the same library code developed for the core protocol daemons, we
were able to rewrite all of these legacy C programs as relatively trivial Python scripts.

At times the balance between performance and agility is not clear. For example, the RPKI
validation engine (rcynic) is still written in C. Because it must deal with the many small details of
the X.509, CMS and ASN.1 technologies that underlie the RPKI, an attempt to rewrite this in
Python would be unwieldy. However, a Python implementation would provide a faster
development cycle for experimentation during protocol design.

4.8 Challenges and Residual Issues

4.8.1 Transport Protocol. The choice to concentrate on security architecture and to choose a
well-known existing transport protocol allowed concentration on the crucial security
requirements during the solution design and implementation. The transport protocol chosen,
rsync, has served well for initial deployment but proved to have some drawbacks.

The design of the RPKI treated the publication transport problem as a black box, and chose
rsync as a widely used, well understood protocol. rsync provided a pull-based transport, requiring
only deltas to be retrieved. Because the RPKI is object security, i.e., the security does not depend
on the channel through which you receive the data, there was an opportunity for architectures that
would distribute data through neighbors, rather than mandate retrieval directly from an central
server. This significantly reduced the scope of the initial implementation problem, which allowed
us to focus on core security architecture issues.

However, there were some attributes of rsync that presented unexpected problems

• Transactional behavior in publication: Changes to a repository’s publication point should
be made as one atomic action, so the manifest is always current with the contents. But
rsync has no transactional features.

• Server side scaling issues: rsync recalculates on the fly. This is a benefit to the server side
implementer who doesn’t have to worry about those issues, but it scales very badly for the
operator of the server. There were concerns that eventually deployment would reach a
point that servers, particularly those providing a hosted CA service, would experience
capacity problems. That point has not been reached yet and is not close, so now is the time
to consider an alternative transport protocol, before the need is urgent.

 Approved for Public Release; Distribution Unlimited.
30

A change in the transport protocol will not change the security solution. The security
architecture is not reliant upon features of the transport protocol, so its design will not be
perturbed by a change in the transport protocol. Other implementation decisions made on the
basis of the transport protocol may themselves change. For example, because rsync is file based,
the retrieved RPKI data in rpki.net is kept in a file system structure. This will likely change to a
true database should the transport protocol change to one that is not file based.

4.8.2 Legacy Space. The address allocation system as described before is a hierarchy. The
hierarchy originally was quite broad - the IANA allocated addresses directly to recipients. When
the RIR system was established, addresses that were allocated directly by IANA were termed
“legacy address space”. The legacy address space holder may or may not be members of their
region’s RIR. This means that the RIR may not be willing to certify their address space. As
reported, one policy proposal adopted in RIPE [47] allows certification of the legacy address
space in the RIPE region. However, the other regions have not followed suit. The RIPE
implementation of the policy created a fee for the service that might hamper even that effort.

Legacy space represents a large portion of some region’s addresses in use. In particular, of
the organizations served by ARIN, more than 40% hold legacy address space [28]

If that address space can not be certified by RIR policy, then there is still considerable risk to
the Internet users of attacks through the routing infrastructure for that space.

This problem may lessen in this period of IPv4 run-out. Legacy addresses are IPv4 addresses.
As the market for IPv4 addresses becomes stronger, it is anticipated that those who hold legacy
space will transfer their address space to others in the transfer market. The result of a formal
transfer is that the new holder will enter into a regular member agreement with ARIN and will
not longer be considered a legacy space holder.

4.8.3 Non-Technical Concerns and External Influences. There are several external, non-
technical forces and concerns that recur in discussions frequently.

• Fears of a hierarchy continue. Although the current address allocation system is
hierarchical, swift enforcement of that hierarchy is difficult. The provision of a secure
hierarchy represents the potential that the hierarchy could now be enforceable. This raises
fears that the hierarchy could be misused to impact routing operations - through error,
through business issues, through legal and outside forces, etc.

• Introduction of any new technology represents risk and effort. As with most security
systems, the return on investment for this new technology is not immediate, or clear, or
even visible.

• Errors a CA makes could lead to harm to someone’s routing, causing them damage. This
has led to a concern about legal liability. This concern is behind a movement by many
RIRs in the SIDR working group to soften the enforcement of certification [17], to lessen
the chance that they would be responsible for damage. The concern over legal liability also
has led ARIN to insist that a relying party seeking access to the ARIN RPKI data must
agree first to a Relying Party Agreement (RPA). This RPA forbids sharing of the data,
which limits some of the architectural distribution methods that are technically possible
and forces everyone to retrieve the ARIN RPKI data directly from ARIN.

• Some operators are concerned that the top of this hierarchy at the RIRs are not accustomed
to an operational role in routing and may not execute that role with stability and robustness.

 Approved for Public Release; Distribution Unlimited.
31

That could hamper the operator’s ability to meet its own SLA agreements with its
customers.

4.8.4 RPKI Latency. The present best practice for origin validation relies on Internet Routing
Registries (IRRs) who provide a routing registry service. Registered route objects are retrieved
from these known sites, typically daily, and used to form filters on the BGP updates. There is a
lag in this system between registration of new information and the time it is retrieved and put into
a filter. The RPKI would behave in a similar pull fashion, and would experience a similar latency
between the time a ROA is published and the time it is retrieved and used in a router.

There are some business models that would eventually require the ability to send authorized
BGP announcements on a moment’s notice. The RPKI latency as relying parties retrieve the
information on their own schedule would interfere with that business model. The current best
practice would also interfere in the same way, but the desire is that the RPKI be capable of
improving that situation.

The latency should be a requirement for consideration in any choice of a new transport
protocol.

4.8.5 BGPSEC Islands of Trust. Avoiding a privilege escalation by disallowing partial path
signing means that a BGP router can use the BGPSEC path validations only with BGPSEC
capable neighbors, and only for routes it received from a BGPSEC capable neighbor or
originated itself. Adoption will grow outward organically from individual first adopters, as
islands of trust.

4.8.6 Routing Problems outside the BGP Protocol. There are some problems in the operation
of the routing infrastructure that do not involve BGP mis-behavior. Some operators are not
interested in a security solution to BGP if it does not solve the non-BGP mis-behavior.

Principal among these issues is route leaks.

A route leak is a neighbor’s violation of an understood constraint on the propagation of an
update that you have sent to the neighbor. This is frequently a matter of the business
relationships. A transit provider sends updates to a customer, but expects that customer not to
propagate to any other networks. Or a peer may send routes to its customers to a peer, but he
expects the peer to propagate the update only within its customer cone. Sometimes the constraint
is not business relationship based, for example, if a set of ASs wish to form a virtual community
and agree not to send updates to ASs that are outside the community for certain updates.

This constraint is implied - it is not expressed in the open, it does not appear in BGP, it is not
enforced by BGP, it is not part of defined BGP behavior.

In order that a BGP security solution should protect against this mis-behavior, the constraint
has to be expressed, available in the open, perhaps in BGP, and BGP defined behaviour would
have to be modified to enforce the constraint.

In recognition of the interest in this problem, the SIDR, GROW, and IDR working groups in
the IETF devised a plan of action. GROW would address a definition of the problem, IDR would
make any necessary changes to the BGP protocol, and SIDR would consider protections for the
new features of BGP.

 Approved for Public Release; Distribution Unlimited.
32

That plan is underway. The GROW working group has adopted route leaks as a work item
[12] and two proposals have been made [4, 25] for extensions to bgpsec that would securely
express and transmit the information needed to stop route leaks.

4.8.7 Uncertain Address Records. Larger ISPs, especially those who have a long history,
perhaps back to legacy address days, find that their records of what addresses they hold and what
addresses they have allocated to customers have not been well maintained. This makes it
necessary for them to preform an audit of their address allocation records before they can know
what certificates and ROAs they should issue or request. An incorrect or unwise certificate or
ROA could cause a customer’s BGP route to be judged invalid, so care is needed.

4.8.8 Further Specification Development. As operational experience progresses, further
specification of tools or protocols may be needed, e.g., specification of a replacement transport
protocol. Work has already begun on specifications not yet adopted by a working group to
specify the process for transfer of an address prefix to a new holder [15] and to provide a fail safe
mechanism to help identify inappropriate behavior by a superior in the RPKI hierarchy [46].

 Approved for Public Release; Distribution Unlimited.
33

5 CONCLUSIONS
The result of this effort has had a visibly positive impact on the standardization, implementation
and initial deployment of the RPKI solution for origin validation, and the design, standardization,
and implementation of a path validation solution. The majority of the specifications published or
underway within the IETF were co-authored by PARSONS and their team members. Word about
the problem space and coming solution space has been spread within multiple operational
communities. The first implementations of solution components were produced by PARSONS
and their team members. Clearly, without this effort the state of deployment would be hugely
reduced and likely entirely non-existent.

The road to the current state of deployment has had its fair share of rough spots and has seen
the occasional unexpected pothole. The summary of the results of the project along with
unexpected major stumbling blocks, along with the corresponding lessons learned, are listed in
the sections below.

5.1 Summary of Results
The following describes the high-level aggregated results of this effort, both positive and
negative.

• Positive: Standardization efforts significantly advanced
The standardization efforts of documenting both the RPKI and BGPSEC within the IETF
standardization body has progressed significantly well. The initial documents describing
the RPKI framework and origin validation have been published as RFCs and the BGPSEC
path validation specifications are nearing completion of work and the start of the
publication process.

• Positive: Operational communities aware of the routing security efforts through outreach
efforts
Through presentations made by PARSONS team members, operational communities
worldwide have been made aware of the routing security efforts and the related RPKI and
BGPSEC solution components. Workshops and demonstrations have been given to help
train operators about what they can expect when full deployment begins.

• Positive: Implementations of RPKI and BGPSEC are available
Multiple implementations of RPKI certification and operational use are freely available;
sophisticated compliance testing suites for certification authorities are available

• Positive: Router vendors have implemented RPKI use
Major router vendors have implemented RPKI use and configuration in their major
software releases

• Negative: Operator reluctance still impacting deployment
Unfortunately, the operational staffing is still heavily impacted with day-to-day operations
and extra workload placed on them in order to secure the routing infrastructure still appears
daunting to them. Because the threats are not perceived as immediate, the timeline for
rolling out deployment is not deemed to be immediate.

• Positive: Policy to certify legacy space adopted in RIPE

 Approved for Public Release; Distribution Unlimited.
34

With the active involvement of the PARSONS team, the RIPE community has adopted a
policy that would allow legacy address holders to receive RPKI certification of their
resources

• Negative: Concern over misuse of hierarchical authority in the RPKI continues
Operators continue to be concerned about damage on routing operations resulting from
deliberate, accidental, or forced actions on the part of the RPKI hierarchy.

• Negative: Concern over RIR ability to operate a robust, stable, globally and continually
available service
The RIRs have a critical position in the RPKI hierarchy that requires a level of service
beyond what they are used to providing. Failure to provide that level of service could
impact the ability of their members to meet their own service level agreements.

5.2 Final Status
The current status of the project is:

standards produced

18 of the 24 IETF publications defining the RPKI, origin validation and path validation are
co-authored by the PARSONS team.

implementations produced

Three different implementation packages have been produced:
1. The only open source RPKI implementation of both CA certification and relying

party operational use of the RPKI that is fully compliant with IETF publications and
with work in progress,

2. a production level implementation of the relying party operational use of the RPKI, a
suite of compliance cases to test CA output, and an implementation of the local trust
anchor management specification [30],

3. and a functional implementation of the BPGSEC protocol.

deployment announcements

First announcements have been made that RPKI operational use in routing has begun or is
planned for this year. Some governments have recommended certification of resources in
general or in the RPKI in particular.

continuing work

As deployment experience continues, enhancements and corrections to existing
specifications and implementations will be needed.

tests and experiments Major ISPs are known to be testing in their own internal labs, and
others are making use of the testing environment and alternate trust anchor, altCA, that is
made available by this project team.

 Approved for Public Release; Distribution Unlimited.
35

6 REFERENCES

[1] Nouvelle methode de filtrage sur les route serveurs : Rpki + roa, October 2014.
http://www.lyonix.net/en/media-adnix/archives/item/nouvelle-
methode-de-filtrage-sur-les-route-serveurs-rpki-roa-9.
[2] ANSSI. L’observatoire de la resilience de l’internet francais publie son rapport 2013.
Communique de presse, Sep 2014. http://www.ssi.gouv.fr/IMG/pdf/CP-
OBSERVATOIRE-RAPPORT-2013.pdf.
[3] R. Austein, G. Huston, S. Kent, and M. Lepinski. Manifests for the Resource Public Key
Infrastructure (RPKI). RFC 6486, February 2012.
[4] B. Dickson (editor). Route Leaks – Proposed Solutions. IETF Internet-Draft, March 2012.
https://tools.ietf.org/html/draft-dickson-sidr-route-leak-solns-
01.
[5] S. Bellovin, R. Bush, and D. Ward. Security Requirements for BGP Path Validation. RFC
7353, August 2014.
[6] Sofia Silva Berenguer. Rpki and origin validation deployment in ecuador, November
2013. http://iepg.org/2013-11-ietf88/RPKI-Ecuador-Experience-v2b-
1.pdf.
[7] BIRD Internet Routing Daemon. http://bird.network.cz.
[8] R. Bush. The Resource Public Key Infrastructure (RPKI) Ghostbusters Record. RFC
6493, February 2012.
[9] R. Bush. Origin Validation Operation Based on the Resource Public Key Infrastructure
(RPKI). RFC 7115, January 2014.
[10] R. Bush and R. Austein. The Resource Public Key Infrastructure (RPKI) to Router
Protocol. RFC 6810, January 2013.
[11] Francois Contat, Mathieu Feuillet, Peter Lorinquer, Samia M’timet, Guillaume Valadon,
Remi Varloot, and Nicolas Vivet. Resilience de l’internet francais. Technical report, L’Agence
nationale de la securite des systemes d’information (ANSSI), 2013.
http://www.ssi.gouv.fr/IMG/pdf/Rapport_Observatoire_2013.pdf.
[12] Danny McPherson and Shane Amante and Eric Osterweil and Dave Mitchell. Route-
Leaks & MITM Attacks Against BGPSEC. IETF GROW Working Group Internet Draft, April
2014. https://tools.ietf.org/html/draft-ietf-grow-simple-leak-
attack-bgpsec-no-help-04.
[13] Andrew de la Haye. Ripe ncc update, April 2014.
https://www.arin.net/participate/meetings/reports/ARIN_33/mem_tra
nscript.html_#anchor_3.
[14] CSRIC III Working Group 6 Secure BGP Deployment. Working group 6 secure bgp
deployment final report, September 2012.
http://transition.fcc.gov/bureaus/pshs/advisory/csric3/CSRICIII_9
-12-12_WG6-Final-Report.pdf.
[15] Edric Barnes. Resource Public Key Infrastructure (RPKI) Resource Transfer Protocol and
Transfer Authorization Object (TAO). IETF SIDR Working Group Internet Draft, February 2014.
http://tools.ietf.org/html/draft-barnes-sidr-tao.

 Approved for Public Release; Distribution Unlimited.
36

[16] R. Gagliano, S. Kent, and S. Turner. Algorithm Agility Procedure for the Resource Public
Key Infrastructure (RPKI). RFC 6916, April 2013.
[17] Geoff Huston and George Michaelson and Carlos Martinez and Tim Bruijnzeels and
Andrew Newton and Alain Aina,. RPKI Validation Reconsidered. IETF SIDR Working Group
Internet Draft, July 2014. https://draft-ietf-sidr-rpki-validation-
reconsidered.
[18] G. Huston, R. Loomans, B. Ellacott, and R. Austein. A Protocol for Provisioning
Resource Certificates. RFC 6492, February 2012.
[19] G. Huston, R. Loomans, and G. Michaelson. A Profile for Resource Certificate
Repository Structure. RFC 6481, February 2012.
[20] G. Huston, G. Michaelson, and S. Kent. Certification Authority (CA) Key Rollover in the
Resource Public Key Infrastructure (RPKI). RFC 6489, February 2012.
[21] G. Huston, G. Michaelson, and R. Loomans. A Profile for X.509 PKIX Resource
Certificates. RFC 6487, February 2012.
[22] IETF. The Internet Engineering Task Force. http://www.ietf.org.
[23] S. Kent and A. Chi. Threat Model for BGP Path Security. RFC 7132, February 2014.
[24] Jac Kloots. Bgpmon alert questions, April 2014.
http://mailman.nanog.org/pipermail/nanog/2014-April/066071.html.
[25] Kotikalapudi Sriram and Doug Montgomery, editors. Enhancement to BGPSEC for
Protection against Route Leaks. IETF Individual Submission Internet Draft, July 2014.
https://tools.ietf.org/doc/<draft-sriram-route-leak-protection.
[26] M. Lepinski and S. Kent. An Infrastructure to Support Secure Internet Routing. RFC
6480, February 2012.
[27] M. Lepinski, S. Kent, and D. Kong. A Profile for Route Origin Authorizations (ROAs).
RFC 6482, February 2012.
[28] Leslie Nobile. Registration Services Update. ARIN 31 Meeting (Presentation), April
2013.
https://www.arin.net/participate/meetings/reports/ARIN_31/PDF/wed
nesday/nobile_rsd.pdf.
[29] C. Lynn, S. Kent, and K. Seo. X.509 Extensions for IP Addresses and AS Identifiers.
RFC 3779, June 2004.
[30] M. Reynolds and S. Kent (editors). Local Trust Anchor Management for the Resource
Public Key Infrastructure. IETF SIDR Working Group Internet Draft, April 2014.
http://tools.ietf.org/html/draft-ietf-sidr-ltamgmt.
[31] M. Reynolds, S. Turner and S. Kent (editors). A Profile for BGPSEC Router Certificates,
Certificate Revocation Lists, and Certification Requests. IETF SIDR Working Group Internet
Draft, August 2014. https://tools.ietf.org/html/draft-ietf-sidr-bgpsec-
pki-profiles-08.
[32] Matthew Lepinski (editor). BGPSEC Protocol Specification. IETF SIDR Working Group
Internet Draft, September 2014. https://tools.ietf.org/doc/draft-ietf-sidr-
bgpsec-protocol/.
[33] P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein. BGP Prefix Origin
Validation. RFC 6811, January 2013.
[34] David Clark, Thomas Berson and Herbert S. Lin, Editors; Committee on Developing a
Cybersecurity Primer: Leveraging Two Decades of National Academies Work; Computer
Science and Telecommunications Board; Division on Engineering and Physical Sciences;

 Approved for Public Release; Distribution Unlimited.
37

National Research Council. At the Nexus of Cybersecurity and Public Policy: Some Basic
Concepts and Issues. The National Academies Press, 2014.
[35] Office of the President George Bush. The national strategy to secure cyberspace, February
2003. https://www.us-
cert.gov/sites/default/files/publications/cyberspace_strategy.pdf
.
[36] Debbie Perouli, Olaf Maennel, Iain Phillips, Sonia Fahmy, Randy Bush, and Rob Austein.
An Experimental Framework for BGP Security Evaluation. it-Information Technology Methoden
und innovative Anwendungen der Informatik und Informationstechnik, 55(4):147–154, 2013.
[37] The Django Project. The django web framework. www.djangoproject.com.
[38] Joint project of the INET research group at the Hamburg University of Applied Sciences
and the CST research group at Freie UniversitÃ¤t Berlin. Rtrlib - the rpki rtr client c library, June
2014. rpki.realmv6.org.
[39] R. Austein (editor). An Out-Of-Band Setup Protocol For RPKI Production Services. IETF
SIDR Working Group Internet Draft, July 2014.
https://tools.ietf.org/html/draft-ietf-sidr-rpki-oob-setup.
[40] R. Bush. Introduction to Legacy Services, PI Services, & Certifying Them. RIPE 66
Meeting (Presentation), May 2013.
https://ripe66.ripe.net/presentations/208-130515.pi-legacy-
intro.pdf.
[41] R. Bush and R. Austein (editors). The Resource Public Key Infrastructure (RPKI) to
Router Protocol. IETF SIDR Working Group Internet Draft, August 2014.
https://tools.ietf.org/html/draft-ietf-sidr-rpki-rtr-rfc6810-bis.
[42] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address
Allocation for Private Internets. RFC 1918, February 1996.
[43] RIPE. Youtube hijacking: A ripe ncc ris case study.
http://www.ripe.net/internet-coordination/news/industry-
developments/youtube-hijacking-a-ripe-ncc-ris-case-study.
[44] University of oregon route views archive project. http://routeviews.org.
[45] rpki.net. Rpki tools manual, October 2014. http://subvert-
rpki.hactrn.net/trunk/doc/manual.pdf.
[46] S. Kent and D. Mandelberg, editors. Suspenders: A Fail-safe Mechanism for the RPKI.
IETF Individual Submission Internet Draft, July 2014.
https://tools.ietf.org/doc/draft-kent-sidr-suspenders.
[47] S. O’Reilly, B. Tuy, D. Wilson, S. Steffan, H. Eidnes, H. Nussbacher, C. Friacas and R.
Bush. RIPE NCC Services to Legacy Internet Resource Holders. RIPE Policy Proposal 2012-07
v4.0, October 2013. https://www.ripe.net/ripe/policies/proposals/2012-
07.
[48] S. Weiler, A. Sonalker, and R. Austein (editors). A Publication Protocol for the Resource
Public Key Infrastructure (RPKI). IETF SIDR Working Group Internet Draft, February 2014.
https://tools.ietf.org/html/draft-ietf-sidr-publication.
[49] SIDR. Secure Inter-Domain Routing, IETF Working Group.
https://datatracker.ietf.org/wg/sidr/.
[50] Starbed large scale emulation testbed. http://starbed.nict.go.jp/en/.

 Approved for Public Release; Distribution Unlimited.
38

[51] Alexandru Stefanescu. Effects of rpki deployment on bgp security, August 2011.
http://www.caida.org/workshops/bgp-traceroute/slides/bgp-
traceroute1108_rpki_deployment_study.pdf.
[52] Mark Tinka. Bgpmon alert questions, April 2014.
http://mailman.nanog.org/pipermail/nanog/2014-April/065989.html.
[53] W3C. World Wide Web Consortium (W3C). http://www.w3.org/.
[54] Matthias Wählisch, Fabian Holler, Thomas C. Schmidt, and Jochen H. Schiller. Rtrlib: An
open-source library in c for rpki-based prefix origin validation. In Presented as part of the 6th
Workshop on Cyber Security Experimentation and Test, Washington, D.C., 2013. USENIX.

 Approved for Public Release; Distribution Unlimited.
39

APPENDIX: PARSONS CO-AUTHORED IETF DOCUMENTS
The following is a list of the published IETF documents that are co-authored by the
PARSONS team.

A.1 IETF Published RFCs
• Lepinski, M. and S. Kent, “An Infrastructure to Support Secure Internet Routing",

RFC 6480, February 2012, <http://www.rfc-editor.org/info/rfc6480>.

• Lepinski, M., Kent, S., and D. Kong, “A Profile for Route Origin Authorizations
(ROAs)", RFC 6482, February 2012, <http://www.rfc-editor.org/info/rfc6482>.

• Kent, S., Kong, D., Seo, K., and R. Watro, “Certificate Policy (CP) for the Resource
Public Key Infrastructure (RPKI)", BCP 173, RFC 6484, February 2012,
<http://www.rfc-editor.org/info/rfc6484>.

• Austein, R., Huston, G., Kent, S., and M. Lepinski, “Manifests for the Resource
Public Key Infrastructure (RPKI)", RFC 6486, February 2012, <http://www.rfc-
editor.org/info/rfc6486>.

• Lepinski, M., Chi, A., and S. Kent, “Signed Object Template for the Resource Public
Key Infrastructure (RPKI)", RFC 6488, February 2012, <http://www.rfc-
editor.org/info/rfc6488>.

• Huston, G., Michaelson, G., and S. Kent, “Certification Authority (CA) Key
Rollover in the Resource Public Key Infrastructure (RPKI)", BCP 174, RFC 6489,
February 2012, <http://www.rfc-editor.org/info/rfc6489>.

• Huston, G., Weiler, S., Michaelson, G., and S. Kent, “Resource Public Key
Infrastructure (RPKI) Trust Anchor Locator", RFC 6490, February 2012,
<http://www.rfc-editor.org/info/rfc6490>.

• Manderson, T., Vegoda, L., and S. Kent, “Resource Public Key Infrastructure
(RPKI) Objects Issued by IANA", RFC 6491, February 2012, <http://www.rfc-
editor.org/info/rfc6491>.

• Huston, G., Loomans, R., Ellacott, B., and R. Austein, “A Protocol for Provisioning
Resource Certificates", RFC 6492, February 2012, <http://www.rfc-
editor.org/info/rfc6492>.

• Bush, R., “The Resource Public Key Infrastructure (RPKI) Ghostbusters Record",
RFC 6493, February 2012, <http://www.rfc-editor.org/info/rfc6493>.

• Bush, R. and R. Austein, “The Resource Public Key Infrastructure (RPKI) to Router
Protocol", RFC 6810, January 2013, <http://www.rfc-editor.org/info/rfc6810>.

• Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R. Austein, “BGP Prefix Origin
Validation", RFC 6811, January 2013, <http://www.rfc-editor.org/info/rfc6811>.

• Gagliano, R., Kent, S., and S. Turner, “Algorithm Agility Procedure for the Resource
Public Key Infrastructure (RPKI)", BCP 182, RFC 6916, April 2013,
<http://www.rfc-editor.org/info/rfc6916>.

 Approved for Public Release; Distribution Unlimited.
40

• Bush, R., Wijnen, B., Patel, K., and M. Baer, “Definitions of Managed Objects for
the Resource Public Key Infrastructure (RPKI) to Router Protocol", RFC 6945, May
2013, <http://www.rfc-editor.org/info/rfc6945>.

• Bush, R., “Origin Validation Operation Based on the Resource Public Key
Infrastructure (RPKI)", BCP 185, RFC 7115, January 2014, <http://www.rfc-
editor.org/info/rfc7115>.

• Bush, R., Austein, R., Patel, K., Gredler, H., and M. Waehlisch, “Resource Public
Key Infrastructure (RPKI) Router Implementation Report", RFC 7128, February
2014, <http://www.rfc-editor.org/info/rfc7128>.

• Kent, S. and A. Chi, “Threat Model for BGP Path Security", RFC 7132, February
2014, <http://www.rfc-editor.org/info/rfc7132>.

• Bellovin, S., Bush, R., and D. Ward, “Security Requirements for BGP Path
Validation", RFC 7353, August 2014, <http://www.rfc-editor.org/info/rfc7353>.

A.2 IETF Internet-Drafts, Works in Progress
The following IETF internet-drafts, co-authored by members of the PARSONS team, have
been adopted by the IETF SIDR working group as work items.

• Matt Lepinski, “BGPSEC Protocol Specification", draft-ietf-sidr-bgpsec-protocol-
09.txt, 2014-07-04, <http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-protocol-09.txt>

This document describes BGPSEC, an extension to the Border Gateway Protocol
(BGP) that provides security for the path of autonomous systems through which a
BGP update message passes. BGPSEC is implemented via a new optional non-
transitive BGP path attribute that carries a digital signature produced by each
autonomous system that propagates the update message.

• Matt Lepinski, Sean Turner, “An Overview of BGPSEC", draft-ietf-sidr-bgpsec-
overview-05.txt, 2014-07-04, <http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-
overview-05.txt>

This document provides an overview of a security extension to the Border Gateway
Protocol (BGP) referred to as BGPSEC. BGPSEC improves security for BGP
routing.

• Mark Reynolds, Sean Turner, Stephen Kent, “A Profile for BGPSEC Router
Certificates, Certificate Revocation Lists, and Certification Requests", draft-ietf-sidr-
bgpsec-pki-profiles-08.txt, 2014-08-12, <http://tools.ietf.org/html/draft-ietf-sidr-
bgpsec-pki-profiles-08.txt>

This document defines a standard profile for X.509 certificates for the purposes of
supporting validation of Autonomous System (AS) paths in the Border Gateway
Protocol (BGP), as part of an extension to that protocol known as BGPSEC. BGP is

 Approved for Public Release; Distribution Unlimited.
41

a critical component for the proper operation of the Internet as a whole. The
BGPSEC protocol is under development as a component to address the requirement
to provide security for the BGP protocol. The goal of BGPSEC is to design a
protocol for full AS path validation based on the use of strong cryptographic
primitives. The End-Entity (EE) certificates specified by this profile are issued under
Resource Public Key Infrastructure (RPKI) Certification Authority (CA) certificates,
containing the AS Identifier Delegation extension, to routers within the Autonomous
System (AS). The certificate asserts that the router(s) holding the private key are
authorized to send out secure route advertisements on behalf of the specified AS.
This document also profiles the Certificate Revocation List (CRL), profiles the
format of certification requests, and specifies Relying Party certificate path
validation procedures. The document extends the RPKI; therefore, this documents
updates the RPKI Resource Certificates Profile (RFC 6487).

• Sean Turner, Keyur Patel, Randy Bush, “Router Keying for BGPsec", draft-ietf-sidr-
rtr-keying-07.txt, 2014-05-23, <http://tools.ietf.org/html/draft-ietf-sidr-rtr-keying-
07.txt>

BGPsec-speaking routers are provisioned with private keys to sign BGP messages;
the corresponding public keys are published in the global RPKI (Resource Public
Key Infrastructure) thereby enabling verification of BGPsec messages. This
document describes two ways of provisioning the public-private key-pairs: router-
driven and operator-driven.

• Stephen Kent, Derrick Kong, Karen Seo, “Template for a Certification Practice
Statement (CPS) for the Resource PKI (RPKI)", draft-ietf-sidr-cps-04.txt, 2014-04-
28, <http://tools.ietf.org/html/draft-ietf-sidr-cps-04.txt>

This document contains a template to be used for creating a Certification Practice
Statement (CPS) for an Organization that is part of the Resource Public Key
Infrastructure (RPKI), e.g., a resource allocation registry or an ISP.

• Wesley George, Sandra Murphy, “BGPSec Considerations for AS Migration", draft-
ietf-sidr-as-migration-02.txt, 2014-07-29, <http://tools.ietf.org/html/draft-ietf-sidr-
as-migration-02.txt>

This draft discusses considerations and methods for supporting and securing a
common method for AS-Migration within the BGPSec protocol.

• Rob Austein, “An Out-Of-Band Setup Protocol For RPKI Production Services",
draft-ietf-sidr-rpki-oob-setup-01.txt, 2014-07-02, <http://tools.ietf.org/html/draft-
ietf-sidr-rpki-oob-setup-01.txt>

This note describes a simple out-of-band protocol to ease setup of the RPKI
provisioning and publication protocols between two parties. The protocol is encoded

 Approved for Public Release; Distribution Unlimited.
42

in a small number of XML messages, which can be passed back and forth by any
mutually agreeable secure means.

This setup protocol is not part of the provisioning or publication protocol, rather, it is
intended to simplify configuration of these protocols by setting up relationships and
exchanging BPKI keying material.

• Randy Bush, “RPKI Local Trust Anchor Use Cases", draft-ietf-sidr-lta-use-cases-
01.txt, 2014-06-28, <http://tools.ietf.org/html/draft-ietf-sidr-lta-use-cases-01.txt>

There are a number of critical circumstances where a localized routing domain needs
to augment or modify its view of the Global RPKI. This document attempts to
outline a few of them.

• Randy Bush, Rob Austein, “The Resource Public Key Infrastructure (RPKI) to
Router Protocol", draft-ietf-sidr-rpki-rtr-rfc6810-bis-02.txt, 2014-08-29,
<http://tools.ietf.org/html/draft-ietf-sidr-rpki-rtr-rfc6810-bis-02.txt>

In order to verifiably validate the origin Autonomous Systems and Autonomous
System Paths of BGP announcements, routers need a simple but reliable mechanism
to receive Resource Public Key Infrastructure (RFC 6480) prefix origin data and
router keys from a trusted cache. This document describes a protocol to deliver
validated prefix origin data and router keys to routers.

• Geoff Huston, Samuel Weiler, George Michaelson, Stephen Kent, “Resource
Certificate PKI (RPKI) Trust Anchor Locator", draft-ietf-sidr-rfc6490-bis-01.txt,
2014-09-18, <http://tools.ietf.org/html/draft-ietf-sidr-rfc6490-bis-01.txt>

This document defines a Trust Anchor Locator (TAL) for the Resource Certificate
Public Key Infrastructure (RPKI).

• Pradosh Mohapatra, Keyur Patel, John Scudder, David Ward, Randy Bush, “BGP
Prefix Origin Validation State Extended Community", draft-ietf-sidr-origin-
validation-signaling-04.txt, 2014-02-14, <http://tools.ietf.org/html/draft-ietf-sidr-
origin-validation-signaling-04.txt>

As part of the origination AS validation process, it can be desirable to automatically
consider the validation state of routes in the BGP decision process. The purpose of
this document is to provide a specification for doing so. The document also defines a
new BGP opaque extended community to carry the validation state inside an
autonomous system to influence the decision process of the IBGP speakers.

• Samuel Weiler, Anuja Sonalker, Rob Austein, “A Publication Protocol for the
Resource Public Key Infrastructure (RPKI)", draft-ietf-sidr-publication-05.txt, 2014-
02-12, <http://tools.ietf.org/html/draft-ietf-sidr-publication-05.txt>

 Approved for Public Release; Distribution Unlimited.
43

This document defines a protocol for publishing Resource Public Key Infrastructure
(RPKI) objects. Even though the RPKI will have many participants issuing
certificates and creating other objects, it is operationally useful to consolidate the
publication of those objects. This document provides the protocol for doing so.

• Randy Bush, “BGPsec Operational Considerations", draft-ietf-sidr-bgpsec-ops-
05.txt, 2012-05-24, <http://tools.ietf.org/html/draft-ietf-sidr-bgpsec-ops-05.txt>

Deployment of the BGPsec architecture and protocols has many operational
considerations. This document attempts to collect and present them. It is expected to
evolve as BGPsec is formalized and initially deployed.

• Stephen Kent, Matthew Lepinski, Mark C. Reynolds, “Local Trust Anchor
Management for the Resource Public Key Infrastructure", draft-ietf-sidr-ltamgmt-
08.txt, 2013-04-05, <http://tools.ietf.org/html/draft-ietf-sidr-ltamgmt-08.txt>

This document describes a facility to enable a relying party (RP) to manage trust
anchors (TAs) in the context of the Resource Public Key Infrastructure (RPKI). It is
common in RP software (not just in the RPKI) to allow an RP to import TA material
in the form of self-signed certificates. However, this approach to incorporating TAs
is potentially dangerous. (These self-signed certificates rarely incorporate any
extensions that impose constraints on the scope of the imported public keys, and the
RP is not able to impose such constraints.) The facility described in this document
allows an RP to impose constraints on such TAs. Because this mechanism is
designed to operate in the RPKI context, the most important constraints are the
Internet Number Resources (INRs) expressed via RFC 3779 extensions. These
extentions bind address spaces and/or autonomous system (AS) numbers to entities.
The primary motivation for the facility described in this document is to enable an RP
to ensure that INR information that it has acquired via some trusted channel is not
overridden by the information acquired from the RPKI repository system or by the
putative TAs that the RP imports. Specifically, the mechanism allows an RP to
specify a set of overriding bindings between public key identifiers and INR data.
These bindings take precedence over any conflicting bindings acquired by the
putative TAs and the certificates downloaded from the RPKI repository system. This
mechanism is designed for local use by an RP, but any entity that is accorded
administrative control over a set of RPs may use this mechanism to convey its view
of the RPKI to RPs within its jurisdiction. The means by which this latter use case is
effected is outside the scope of this document.

The following internet-drafts, co-authored by members of the PARSONS team, have not been
accepted by the SIDR working groups as work items.

• Edric Barnes, “Resource Public Key Infrastructure (RPKI) Resource Transfer
Protocol and Transfer Authorization Object (TAO)”, draft-barnes-sidr-tao-00.txt,
2014-02-13, <http://tools.ietf.org/html/draft-barnes-sidr-tao-00.txt>

 Approved for Public Release; Distribution Unlimited.
44

This document defines an extension to the rpki-updown protocol to provide support
for transferring Internet Number Resources from one INR holder to another. Such
transfers take place external to the RPKI, using procedures defined within and
between RIRs. This protocol facilitates automation of the maintenance of RPKI data
in the context of INR transfers. The protocol supports asynchronous transfers of live
or unused INRs within an RIR or between RIRs. The scope of this protocol is limited
to the transfer of Internet Number Resources within the Resource Public Key
Infrastructure. In support of this protocol, this document also defines a new signed
object type for the RPKI repository system, the Transfer Authorization Object
(TAO).

• Randy Bush, “Responsible Grandparenting in the RPKI”, draft-ymbk-rpki-
grandparenting-04.txt, 2014-02-04, <http://tools.ietf.org/html/draft-ymbk-rpki-
grandparenting-04.txt>

There are circumstances in RPKI operations where a resource holder’s parent may
not be able to, or may not choose to, facilitate full and proper registration of the
holder’s data. As in real life, the holder may form a relationship with their
grandparent who is willing to aid the grandchild. This document describes simple
procedures for doing so.

• Stephen Kent, David Mandelberg, “Suspenders: A Fail-safe Mechanism for the
RPKI", draft-kent-sidr-suspenders-02.txt, 2014-07-03,
<http://tools.ietf.org/html/draft-kent-sidr-suspenders-02.txt>

The Resource Public Key Infrastructure (RPKI) is an authorization infrastructure that
allows the holder of Internet Number Resources (INRs) to make verifiable
statements about those resources. The certification authorities (CAs) in the RPKI
issue certificates to match their allocation of INRs. These entities are trusted to issue
certificates that accurately reflect the allocation state of resources as per their
databases. However, there is some risk that a CA will make inappropriate changes to
the RPKI, either accidentally or deliberately (e.g., as a result of some form of
"government mandate"). The mechanisms described below, and referred to as
“Suspenders" are intended to address this risk.

Suspenders enables an INR holder to publish information about changes to objects it
signs and publishes in the RPKI repository system. This information is made
available via a file that is external to the RPKI repository, so that Relying Parties
(RPs) can detect erroneous or malicious changes related to these objects. RPs can
then decide, individually, whether to accept changes that are not corroborated by
independent assertions by INR holders, or to revert to previously verified RPKI data.

• David Mandelberg, “Simplified Local internet nUmber Resource Management with
the RPKI", draft-dseomn-sidr-slurm-01.txt, 2014-07-03,
<http://tools.ietf.org/html/draft-dseomn-sidr-slurm-01.txt>

 Approved for Public Release; Distribution Unlimited.
45

The Resource Public Key Infrastructure (RPKI) is a global authorization
infrastructure that allows the holder of Internet Number Resources (INRs) to make
verifiable statements about those resources. Internet Service Providers (ISPs) can use
the RPKI to validate BGP route origination assertions. Some ISPs locally use BGP
with private address space or private AS numbers (see RFC6890). These local BGP
routes cannot be verified by the global RPKI, and SHOULD be considered invalid
based on the global RPKI (see RFC6491). The mechanisms described below provide
ISPs with a way to make local assertions about private (reserved) INRs while using
the RPKI’s assertions about all other INRs.

 Approved for Public Release; Distribution Unlimited.
46

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS
API Application Programming Interface.

AS Autonomous System
AS is a collection of connected Internet Protocol (IP) routing prefixes under the control of
one or more network operators that presents a common, clearly defined routing policy to
the Internet.

ASN Autonomous System Number. ASN is the number associated to a AS.
ASN.1 Abstract Syntax Notation One

ASN.1 is a language for describing structured information.

BGP Border Gateway Protocol
This is the routing protocol used to transfer reachability and routing information between
Autonomous Systems (AS’s) on the internet.

BGPSEC BGP Security
Additions to the BGP protocol to increase the security of the exchanged routing
information.

BIRD The BIRD Internet Router Daemon is an open source routing software package

BPKI Business Public Key Infrastructure.

CA Certification Authority (x509)
An entity that issues digital certificates. The certificates are used to certify that the subject
of the certificate owns the public key associated with the certificate. In the X.509 Public
Key Infrastructure model, the CA is a trusted third party. That is, the owner of the
certificate and the user, or relying party, of the certificate both trust the CA.

CMS Cryptographic Message Syntax
CMS is the IETF’s standard for cryptographically protected messages.

ECDSA Elliptic Curve Digital Signature Algorithm (ECDSA)
is a variant of the Digital Signature Algorithm (DSA) which operates on elliptic curve
groups. The EC variant provides smaller key sizes for the same security level. This
algorithm is used for signing and authenticating within the BGPSEC path attribute in
BGP UPDATE messages.

GUI Graphical User Interface.

IANA Internet Assigned Numbers Authority
The IANA manages the DNS Root Zone, coordinates allocations from the global IP and
AS number spaces, and serves as the central repository for protocol name and number
registries used in many Internet protocols.

IETF Internet Engineering Task Force [22]
The mission of the IETF is to make the Internet work better by producing high quality,
relevant technical documents that influence the way people design, use, and manage the
Internet.

IRBE Internet Registry Back End.

IRDB Internet Registry Data Base.

 Approved for Public Release; Distribution Unlimited.
47

IRR Internet Routing Registry
The union of world-wide routing policy databases that use the Routing Policy
Specification Language.

ISP Internet Service Provider.

ODBC Open Database Connectivity
ODBC is a standard programming language middleware API for accessing database
management systems.

ORM Object-Relational Mapper
ORM is a programming technique for converting data between incompatible type systems
in relational databases and object-oriented programming languages. In Django, the data
models are defined as Python classes.

RIR Regional Internet Registries
Regional Internet Registries (RIRs) manage, distribute, and register public Internet
Number Resources within their respective regions.

ROA Route Origin Authorization
A ROA is a digitally signed object that provides a means of verifying that an IP address
block holder has authorized an Autonomous System (AS) to originate routes to one or
more prefixes within the address block.

RP Relying Party
An entity or individual that acts in reliance on certificates issued by a certification
authority (CA).

RPA Relying Party Agreement
An agreement between a CA and its Relying Parties.

RPKI Resource Public Key Infrastructure
A Public Key Infrastructure (PKI) used to support attestations about Internet Number
Resource (INR) holdings.

RPSL Routing Policy Specification Language
The language used to express routing policies in an Internet Routing Registry.

RPSTIR Relying Party Security Technology for Internet Routing
Pronounced ”rip-stir”. Using the global Resource Public Key Infrastructure (RPKI),
RPSTIR securely generates a list of authorized prefix-origin AS pairs. This list can be
used by the RPKI-RTR protocol, enabling routers to detect false origin announcements
due to errors by network operators.

RTR RPKI to Router Protocol
The RPKI to router protocol, used to communicate validated prefix origin data from a
trusted RPKI cache to a router. 13, 44

SIDR Secure Inter-Domain Routing (Working Group)
IETF Working Group that worked on creating BGPSEC [49].

SQL Structured Query Language
SQL is a query language used for managing data held in a relational database system.

 Approved for Public Release; Distribution Unlimited.
48

SSH Secure Shell
SSH is a protocol for secure remote login and other secure network services over an
insecure networks.

SSL Secure Sockets Layer
SSL is a protocol that provides communication security over the Internet.

SVN Apache Subversion (often abbreviated SVN, after the command name svn)
is a software versioning and revision control system distributed as free software under the
Apache License. Developers use Subversion to maintain current and historical versions of
files such as source code, web pages, and documentation.

XML Extensible Markup Language
XML is a markup language defined by the W3C[53] that defines a set of rules for
encoding documents in a format that is human and machine readable.

YaML YAML Ain’t Markup Language
YaML is a human-readable data serialization format.

 Approved for Public Release; Distribution Unlimited.
49

GLOSSARY OF TERMINOLOGY
Apache Apache is a commercial grade web server package.

Django Django is a free and open source web application framework written in Python, that
encourages rapid development and clean, pragmatic design.

ghostbuster An RPKI signed object which contains contact information for a person responsible
for the RPKI repository in which the object appears.

irdbd A sample implementation of an IR database daemon.

left-right The left-right protocol is two separate client/server protocols over separate channels
between the RPKI engine and the IR back end (IRBE). The IRBE is the client for one of
the subprotocols, the RPKI engine is the client for the other.

MySQL a widely used and popular open source database package.

OpenSSL a widely used, open source implementation of many cryptographic features, including
support for X.509 Public Key Infrastructure, XML, and many different cryptographic
algorithms.

prefix a contiguous block of Internet addresses, called a prefix because all the addresses share the
same initial bit pattern.

pubd The publication engine daemon.

rcynic The primary validation tool in the rpki.net package.

Relying Party The entity which retrieves RPKI objects from repositories, validates them, and
uses the result of that validation process as input to other processes, such as BGP security.

rootd A separate daemon for handling the root of an RPKI certificate tree.

RouteViews Route Views is a project founded by Advanced Network Technology Center at the
University of Oregon to allow Internet users to view global BGP routing information
from the perspective of other locations around the internet. Originally created to help
Internet Service Providers determine how their network prefixes were viewed by others in
order to debug and optimise access to their network, Route Views is now used for a range
of other purposes such as academic research.

rpki-rtr A protocol to deliver validated prefix origin data to routers. Described in RFC 6810
[10].

rpki.net rpki.net is a project and website. The project provides a free, BSD License, open source,
complete system for the Internet Registry or ISP. It includes separate components which
may be combined to suit your needs.

rpkic A command line interface to control rpkid and pubd. 10, 44/ rpkid The main RPKI
certificate issuance daemon.

rsync A file synchronization and file transfer program for Unix-like systems that minimizes
network data transfer by using a form of delta encoding called the rsync algorithm.

 rtr-origin rtr-origin is an implementation of the rpki-rtr protocol, including the rpki-rtr server, a
test client and a utility for examining the content of the database rtr-origin generates.

 Approved for Public Release; Distribution Unlimited.
50

RTRlib RPKI RTR Client C Library/ The RTRlib is an open-source C implementation of the
RPKI/Router Protocol client [38].

subversion Apache Subversion (often abbreviated SVN, after the command name svn) is a
software versioning and revision control system distributed as free software under the
Apache License. Developers use Subversion to maintain current and historical versions of
files such as source code, web pages, and documentation.

up-down A RPKI certificate provisioning protocol which is expressed as a simple
request/response interaction, where the client passes a request to the server, and the server
generates a corresponding response. Described in RFC 6492[18].

X.509 an ITU-T standard for public key infrastructure (PKI) certificates and certificate
revocation lists.

 Approved for Public Release; Distribution Unlimited.
51

	List of Figures
	Acknowledgements
	1 SUMMARY
	2.1 BGP and a Comprehensive Solution

	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Project Design
	3.1.1 Project Team: Multi-Stakeholder Constituency.
	3.1.2 Implementation: Reference Implementations and Open Source Model.
	3.1.3 Security Solutions: Parallel Existing Systems.
	3.1.4 Comprehensive Solution: Distinct Strategies for Solution Components.
	Origin Validation Strategy.
	Path Validation Strategy.
	3.1.5 Deployment: Proactive Advocacy.

	3.2 Software Reference Implementation Designs
	3.2.1 Software: Rpki.net.
	3.2.1.1 Relying Party Tools.
	3.2.1.2 Certificate Authority (CA) Tools.
	3.2.1.3 Rpki.net GUI Interface.
	3.2.1.4 Documentation and Development Environment.
	3.2.1.5 Software Dependencies.

	3.2.2 Software: RPSTIR.
	3.2.2.1 RPKI synchronization and local caching.
	3.2.2.2 RTR Server; Route Origin Verification.
	3.2.2.3 Compliance Tools.
	3.2.2.4 Software Dependencies.

	3.2.3 Software: BGPSEC Implementation.

	4 RESULTS AND DISCUSSION
	4.1 Comprehensive Solution
	4.2 Project Success in Standardization
	4.3 Project Design Success
	4.3.1 Results: Team Multi-Stakeholder Constituency.
	4.3.2 Results: Deployment.
	4.3.3 Results: Proactive Advocacy.

	4.4 Results: Rpki.net
	4.4.1 RPKI Supporting Protocols.
	4.4.2 Testing Scripts.
	4.4.3 Balance Between Performance and Agile Coding.
	4.4.4 Documentation and Development Environment.
	4.4.5 Rpki.net GUI.

	4.5 Results: RPSTIR
	4.6 Results: BGPSEC Implementation
	4.7 Lessons Learned
	4.7.1 Workshops.
	4.7.2 Testing and Deployment Tools.
	4.7.3 Revisiting Design Decisions as Capabilities are Added.
	4.7.4 Testing.
	4.7.5 Tradeoffs between Performance and Agile Coding.

	4.8 Challenges and Residual Issues
	4.8.1 Transport Protocol.
	4.8.2 Legacy Space.
	4.8.3 Non-Technical Concerns and External Influences.
	4.8.4 RPKI Latency.
	4.8.5 BGPSEC Islands of Trust.
	4.8.6 Routing Problems outside the BGP Protocol.
	4.8.7 Uncertain Address Records.
	4.8.8 Further Specification Development.

	5 CONCLUSIONS
	5.1 Summary of Results
	5.2 Final Status

	6 REFERENCES
	APPENDIX: PARSONS CO-AUTHORED IETF DOCUMENTS
	A.1 IETF Published RFCs
	A.2 IETF Internet-Drafts, Works in Progress

	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS
	GLOSSARY OF TERMINOLOGY

